OpenCode MCP Server

OpenCode MCP Server

Integrates the OpenCode AI coding agent into MCP-compatible clients, allowing users to execute terminal-based coding tasks and manage sessions programmatically. It provides tools for running commands, listing AI models, and continuing existing coding sessions via the OpenCode CLI.

Category
访问服务器

README

OpenCode MCP Server

Python 3.10+ MCP 1.2.0+ License: MIT

An MCP (Model Context Protocol) server that provides seamless integration with OpenCode, the open-source AI coding agent for the terminal.

Features

  • Execute OpenCode Commands: Run any OpenCode CLI command programmatically
  • Session Management: Create, continue, and export coding sessions
  • Model Discovery: List available AI models from all configured providers
  • Async Execution: Non-blocking command execution with timeout handling
  • JSON Lines Parsing: Robust parsing of OpenCode's streaming output format

Tools Available

Tool Description
execute_opencode_command Execute any OpenCode CLI command with full flexibility
opencode_run Run OpenCode with a simple prompt message
opencode_continue_session Continue an existing OpenCode session
opencode_list_models List available models, optionally filtered by provider
opencode_export_session Export session data as JSON
opencode_get_status Check OpenCode CLI availability and status

Installation

Prerequisites

  • Python 3.10+
  • OpenCode CLI installed and configured
  • MCP-compatible client (Claude Desktop, etc.)

Install Dependencies

pip install -r requirements.txt

Configure MCP Client

Add to your MCP client configuration (e.g., ~/.claude.json or Claude Desktop settings):

{
  "mcpServers": {
    "opencode": {
      "command": "python",
      "args": ["-m", "src.services.fast_mcp.opencode_server"],
      "cwd": "/path/to/opencode-mcp"
    }
  }
}

Usage

Basic Usage

Once configured, the MCP tools are available through your MCP client:

# Run a coding task
opencode_run(message="Create a Python function that calculates fibonacci numbers")

# List available models
opencode_list_models(provider="anthropic")

# Continue a previous session
opencode_continue_session(session_id="abc123", message="Now add unit tests")

# Check status
opencode_get_status()

Tool Parameters

execute_opencode_command

{
    "prompt": str,           # Required: The prompt/task for OpenCode
    "model": str,            # Optional: Model in provider/model format (e.g., "anthropic/claude-sonnet-4-20250514")
    "agent": str,            # Optional: Agent to use (e.g., "build", "plan")
    "session": str,          # Optional: Session ID to continue
    "continue_session": bool, # Optional: Whether to continue last session
    "timeout": int           # Optional: Timeout in seconds (default: 300, max: 600)
}

opencode_run

{
    "message": str,     # Required: Message/prompt to send
    "model": str,       # Optional: Model to use
    "agent": str,       # Optional: Agent to use
    "files": [str],     # Optional: Files to attach
    "timeout": int      # Optional: Timeout in seconds
}

opencode_continue_session

{
    "session_id": str,  # Required: Session ID to continue
    "message": str,     # Optional: Follow-up message
    "timeout": int      # Optional: Timeout in seconds
}

Configuration

Environment variables (prefix: OPENCODE_):

Variable Default Description
OPENCODE_COMMAND opencode Path to OpenCode CLI
OPENCODE_DEFAULT_MODEL None Default model to use
OPENCODE_DEFAULT_AGENT None Default agent to use
OPENCODE_DEFAULT_TIMEOUT 300 Default timeout (seconds)
OPENCODE_MAX_TIMEOUT 600 Maximum timeout (seconds)
OPENCODE_SERVER_LOG_LEVEL INFO Logging level

Architecture

src/services/fast_mcp/opencode_server/
├── __init__.py
├── __main__.py          # Entry point
├── server.py            # MCP server & tool definitions
├── opencode_executor.py # CLI execution wrapper
├── models.py            # Pydantic models
├── settings.py          # Configuration
└── handlers/
    ├── __init__.py
    ├── execution.py     # Run/continue operations
    ├── session.py       # Session management
    └── discovery.py     # Model/status discovery

Development

Running Tests

pytest tests/ -v

Code Formatting

black src/
ruff check src/

Roadmap

Planned features for v2.0:

  • [ ] opencode_import_session - Import sessions from JSON/URL
  • [ ] opencode_list_sessions - List all sessions with filtering
  • [ ] opencode_get_stats - Usage statistics and cost tracking
  • [ ] opencode_list_agents - List available agents
  • [ ] opencode_github_run - GitHub Actions integration (async)
  • [ ] opencode_pr_checkout - PR workflow support

Contributing

Contributions are welcome! Please read the contributing guidelines before submitting PRs.

License

MIT License - see LICENSE for details.

Related Projects

Acknowledgments

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选