OpenCode MCP Server
Integrates the OpenCode AI coding agent into MCP-compatible clients, allowing users to execute terminal-based coding tasks and manage sessions programmatically. It provides tools for running commands, listing AI models, and continuing existing coding sessions via the OpenCode CLI.
README
OpenCode MCP Server
An MCP (Model Context Protocol) server that provides seamless integration with OpenCode, the open-source AI coding agent for the terminal.
Features
- Execute OpenCode Commands: Run any OpenCode CLI command programmatically
- Session Management: Create, continue, and export coding sessions
- Model Discovery: List available AI models from all configured providers
- Async Execution: Non-blocking command execution with timeout handling
- JSON Lines Parsing: Robust parsing of OpenCode's streaming output format
Tools Available
| Tool | Description |
|---|---|
execute_opencode_command |
Execute any OpenCode CLI command with full flexibility |
opencode_run |
Run OpenCode with a simple prompt message |
opencode_continue_session |
Continue an existing OpenCode session |
opencode_list_models |
List available models, optionally filtered by provider |
opencode_export_session |
Export session data as JSON |
opencode_get_status |
Check OpenCode CLI availability and status |
Installation
Prerequisites
- Python 3.10+
- OpenCode CLI installed and configured
- MCP-compatible client (Claude Desktop, etc.)
Install Dependencies
pip install -r requirements.txt
Configure MCP Client
Add to your MCP client configuration (e.g., ~/.claude.json or Claude Desktop settings):
{
"mcpServers": {
"opencode": {
"command": "python",
"args": ["-m", "src.services.fast_mcp.opencode_server"],
"cwd": "/path/to/opencode-mcp"
}
}
}
Usage
Basic Usage
Once configured, the MCP tools are available through your MCP client:
# Run a coding task
opencode_run(message="Create a Python function that calculates fibonacci numbers")
# List available models
opencode_list_models(provider="anthropic")
# Continue a previous session
opencode_continue_session(session_id="abc123", message="Now add unit tests")
# Check status
opencode_get_status()
Tool Parameters
execute_opencode_command
{
"prompt": str, # Required: The prompt/task for OpenCode
"model": str, # Optional: Model in provider/model format (e.g., "anthropic/claude-sonnet-4-20250514")
"agent": str, # Optional: Agent to use (e.g., "build", "plan")
"session": str, # Optional: Session ID to continue
"continue_session": bool, # Optional: Whether to continue last session
"timeout": int # Optional: Timeout in seconds (default: 300, max: 600)
}
opencode_run
{
"message": str, # Required: Message/prompt to send
"model": str, # Optional: Model to use
"agent": str, # Optional: Agent to use
"files": [str], # Optional: Files to attach
"timeout": int # Optional: Timeout in seconds
}
opencode_continue_session
{
"session_id": str, # Required: Session ID to continue
"message": str, # Optional: Follow-up message
"timeout": int # Optional: Timeout in seconds
}
Configuration
Environment variables (prefix: OPENCODE_):
| Variable | Default | Description |
|---|---|---|
OPENCODE_COMMAND |
opencode |
Path to OpenCode CLI |
OPENCODE_DEFAULT_MODEL |
None | Default model to use |
OPENCODE_DEFAULT_AGENT |
None | Default agent to use |
OPENCODE_DEFAULT_TIMEOUT |
300 |
Default timeout (seconds) |
OPENCODE_MAX_TIMEOUT |
600 |
Maximum timeout (seconds) |
OPENCODE_SERVER_LOG_LEVEL |
INFO |
Logging level |
Architecture
src/services/fast_mcp/opencode_server/
├── __init__.py
├── __main__.py # Entry point
├── server.py # MCP server & tool definitions
├── opencode_executor.py # CLI execution wrapper
├── models.py # Pydantic models
├── settings.py # Configuration
└── handlers/
├── __init__.py
├── execution.py # Run/continue operations
├── session.py # Session management
└── discovery.py # Model/status discovery
Development
Running Tests
pytest tests/ -v
Code Formatting
black src/
ruff check src/
Roadmap
Planned features for v2.0:
- [ ]
opencode_import_session- Import sessions from JSON/URL - [ ]
opencode_list_sessions- List all sessions with filtering - [ ]
opencode_get_stats- Usage statistics and cost tracking - [ ]
opencode_list_agents- List available agents - [ ]
opencode_github_run- GitHub Actions integration (async) - [ ]
opencode_pr_checkout- PR workflow support
Contributing
Contributions are welcome! Please read the contributing guidelines before submitting PRs.
License
MIT License - see LICENSE for details.
Related Projects
- OpenCode - The AI coding agent this server integrates with
- Model Context Protocol - The protocol specification
- MCP SDK - Python SDK for MCP
Acknowledgments
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。