OpenF1 MCP Server

OpenF1 MCP Server

Enables access to Formula 1 data from the openF1.org API, including driver information, race results, lap times, telemetry, pit stops, weather conditions, and live position data across multiple seasons.

Category
访问服务器

README

OpenF1 MCP Server

A Model Context Protocol (MCP) server that connects to the openF1.org API to fetch Formula 1 data. This server uses the stdio transport method for communication.

Features

The MCP server provides tools to fetch various Formula 1 data:

  • Drivers - Get driver information, filter by season or driver number
  • Teams - Fetch team data for specific seasons
  • Races - Get race information by season or round
  • Sessions - Fetch practice, qualifying, and race sessions
  • Results - Get race results filtered by session or driver
  • Laps - Fetch lap-by-lap data from sessions
  • Stints - Get tire stint information
  • Pit Stops - Access pit stop data
  • Weather - Fetch weather conditions during sessions
  • Incidents - Get penalty and collision data
  • Car Data - Access telemetry data (throttle, brake, DRS, etc.)
  • Positions - Get live position data during sessions

Installation

  1. Clone or download this project
  2. Install dependencies:
    pip install -r requirements.txt
    

Usage

Running the Server

Start the MCP server using stdio transport:

python -m src.server

Connecting via Claude

To use this server with Claude Desktop, add it to your claude_desktop_config.json:

macOS/Linux: ~/.config/claude/claude_desktop_config.json

Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "openf1": {
      "command": "python",
      "args": ["-m", "src.server"],
      "cwd": "/path/to/openf1_mcp"
    }
  }
}

Available Tools

list_drivers

Fetch F1 drivers. Optionally filter by season or driver number.

Parameters:

  • season (optional): Filter by season year (e.g., 2024)
  • driver_number (optional): Filter by driver number

list_teams

Fetch F1 teams. Optionally filter by season.

Parameters:

  • season (optional): Filter by season year (e.g., 2024)

list_races

Fetch F1 races. Optionally filter by season or round number.

Parameters:

  • season (optional): Filter by season year
  • round_number (optional): Filter by round number

list_sessions

Fetch F1 sessions (practice, qualifying, race).

Parameters:

  • season (optional): Filter by season year
  • round_number (optional): Filter by round number

list_results

Fetch race results. Optionally filter by session or driver.

Parameters:

  • session_key (optional): Filter by session key
  • driver_number (optional): Filter by driver number

list_laps

Fetch lap data from a session.

Parameters:

  • session_key (optional): Session key for filtering
  • driver_number (optional): Filter by driver number

list_stints

Fetch stint data (tire stints).

Parameters:

  • session_key (optional): Session key for filtering
  • driver_number (optional): Filter by driver number

list_pit_stops

Fetch pit stop data from a session.

Parameters:

  • session_key (optional): Session key for filtering
  • driver_number (optional): Filter by driver number

get_weather

Fetch weather data for a session.

Parameters:

  • session_key: Session key

list_incidents

Fetch incident data (collisions, penalties, etc.).

Parameters:

  • session_key (optional): Session key
  • driver_number (optional): Filter by driver number

get_car_data

Fetch car telemetry data (throttle, brake, DRS, etc.).

Parameters:

  • session_key (optional): Session key
  • driver_number (optional): Filter by driver number

list_positions

Fetch position data (live positions during session).

Parameters:

  • session_key (optional): Session key
  • driver_number (optional): Filter by driver number

API Reference

This project uses the openF1.org API which provides:

  • No authentication required
  • Free to use
  • Open source data from Formula 1

For more information about the API, visit openf1.org

Project Structure

openf1_mcp/
├── src/
│   ├── __init__.py
│   ├── server.py           # Main MCP server implementation
│   ├── openf1_client.py    # OpenF1 API client
├── tests/
│   ├── __init__.py
│   ├── conftest.py         # Pytest configuration
│   ├── test_openf1_client.py   # Client unit tests
│   ├── test_server.py          # Server unit tests
│   └── test_integration.py     # Integration tests
├── requirements.txt        # Python dependencies
├── pytest.ini             # Pytest configuration
├── run_tests.py           # Test runner script
└── README.md              # This file

Testing

The project includes comprehensive unit and integration tests.

Running Tests

Unit tests only:

python -m pytest tests/

Unit tests with coverage:

python -m pytest tests/ --cov=src --cov-report=html

Integration tests (requires API access):

python -m pytest tests/ --integration

Using the test runner script:

python run_tests.py                    # Run unit tests
python run_tests.py --integration      # Run all tests including integration
python run_tests.py --coverage         # Run unit tests with coverage report
python run_tests.py --integration --coverage  # Run all tests with coverage

Test Files

  • tests/test_openf1_client.py - Tests for the OpenF1 API client
  • tests/test_server.py - Tests for the MCP server and tool registration
  • tests/test_integration.py - Integration tests using the real API

Development

To extend the server with additional tools:

  1. Add new methods to OpenF1Client in src/openf1_client.py
  2. Add corresponding tool definitions in OpenF1MCPServer.get_tools() in src/server.py
  3. Add handling for the new tool in _run_tool() method
  4. Add tests in tests/test_openf1_client.py and tests/test_server.py

License

This project is open source and available under the MIT License.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选