OpenRouter MCP Multimodal Server
Provides access to OpenRouter.ai's diverse model ecosystem for text chat and image analysis capabilities, with support for multimodal conversations and automatic image optimization.
README
OpenRouter MCP Multimodal Server
An MCP (Model Context Protocol) server that provides chat and image analysis capabilities through OpenRouter.ai's diverse model ecosystem. This server combines text chat functionality with powerful image analysis capabilities.
Features
-
Text Chat:
- Direct access to all OpenRouter.ai chat models
- Support for simple text and multimodal conversations
- Configurable temperature and other parameters
-
Image Analysis:
- Analyze single images with custom questions
- Process multiple images simultaneously
- Automatic image resizing and optimization
- Support for various image sources (local files, URLs, data URLs)
-
Model Selection:
- Search and filter available models
- Validate model IDs
- Get detailed model information
- Support for default model configuration
-
Performance Optimization:
- Smart model information caching
- Exponential backoff for retries
- Automatic rate limit handling
What's New in 1.5.0
-
Improved OS Compatibility:
- Enhanced path handling for Windows, macOS, and Linux
- Better support for Windows-style paths with drive letters
- Normalized path processing for consistent behavior across platforms
-
MCP Configuration Support:
- Cursor MCP integration without requiring environment variables
- Direct configuration via MCP parameters
- Flexible API key and model specification options
-
Robust Error Handling:
- Improved fallback mechanisms for image processing
- Better error reporting with specific diagnostics
- Multiple backup strategies for file reading
-
Image Processing Enhancements:
- More reliable base64 encoding for all image types
- Fallback options when Sharp module is unavailable
- Better handling of large images with automatic optimization
Installation
Option 1: Install via npm
npm install -g @stabgan/openrouter-mcp-multimodal
Option 2: Run via Docker
docker run -i -e OPENROUTER_API_KEY=your-api-key-here stabgandocker/openrouter-mcp-multimodal:latest
Quick Start Configuration
Prerequisites
- Get your OpenRouter API key from OpenRouter Keys
- Choose a default model (optional)
MCP Configuration Options
Add one of the following configurations to your MCP settings file (e.g., cline_mcp_settings.json or claude_desktop_config.json):
Option 1: Using npx (Node.js)
{
"mcpServers": {
"openrouter": {
"command": "npx",
"args": [
"-y",
"@stabgan/openrouter-mcp-multimodal"
],
"env": {
"OPENROUTER_API_KEY": "your-api-key-here",
"DEFAULT_MODEL": "qwen/qwen2.5-vl-32b-instruct:free"
}
}
}
}
Option 2: Using uv (Python Package Manager)
{
"mcpServers": {
"openrouter": {
"command": "uv",
"args": [
"run",
"-m",
"openrouter_mcp_multimodal"
],
"env": {
"OPENROUTER_API_KEY": "your-api-key-here",
"DEFAULT_MODEL": "qwen/qwen2.5-vl-32b-instruct:free"
}
}
}
}
Option 3: Using Docker
{
"mcpServers": {
"openrouter": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"-e", "OPENROUTER_API_KEY=your-api-key-here",
"-e", "DEFAULT_MODEL=qwen/qwen2.5-vl-32b-instruct:free",
"stabgandocker/openrouter-mcp-multimodal:latest"
]
}
}
}
Option 4: Using Smithery (recommended)
{
"mcpServers": {
"openrouter": {
"command": "smithery",
"args": [
"run",
"stabgan/openrouter-mcp-multimodal"
],
"env": {
"OPENROUTER_API_KEY": "your-api-key-here",
"DEFAULT_MODEL": "qwen/qwen2.5-vl-32b-instruct:free"
}
}
}
}
Examples
For comprehensive examples of how to use this MCP server, check out the examples directory. We provide:
- JavaScript examples for Node.js applications
- Python examples with interactive chat capabilities
- Code snippets for integrating with various applications
Each example comes with clear documentation and step-by-step instructions.
Dependencies
This project uses the following key dependencies:
@modelcontextprotocol/sdk: ^1.8.0 - Latest MCP SDK for tool implementationopenai: ^4.89.1 - OpenAI-compatible API client for OpenRoutersharp: ^0.33.5 - Fast image processing libraryaxios: ^1.8.4 - HTTP client for API requestsnode-fetch: ^3.3.2 - Modern fetch implementation
Node.js 18 or later is required. All dependencies are regularly updated to ensure compatibility and security.
Available Tools
mcp_openrouter_chat_completion
Send text or multimodal messages to OpenRouter models:
use_mcp_tool({
server_name: "openrouter",
tool_name: "mcp_openrouter_chat_completion",
arguments: {
model: "google/gemini-2.5-pro-exp-03-25:free", // Optional if default is set
messages: [
{
role: "system",
content: "You are a helpful assistant."
},
{
role: "user",
content: "What is the capital of France?"
}
],
temperature: 0.7 // Optional, defaults to 1.0
}
});
For multimodal messages with images:
use_mcp_tool({
server_name: "openrouter",
tool_name: "mcp_openrouter_chat_completion",
arguments: {
model: "anthropic/claude-3.5-sonnet",
messages: [
{
role: "user",
content: [
{
type: "text",
text: "What's in this image?"
},
{
type: "image_url",
image_url: {
url: "https://example.com/image.jpg"
}
}
]
}
]
}
});
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。