OpenWeatherMap MCP Server
Provides access to real-time weather data, 5-day forecasts, and air quality information for any city using the OpenWeatherMap API.
README
OpenWeatherMap MCP Server
A Model Context Protocol (MCP) server that provides weather data using the OpenWeatherMap API. This example demonstrates how to build an MCP server with multiple tools for current weather, forecasts, and air pollution data.
Features
- Current Weather: Get real-time weather conditions for any city
- 5-Day Forecast: Retrieve weather forecasts with 3-hour intervals
- Air Pollution: Access air quality data including pollutant concentrations
Prerequisites
- Python 3.12+
- OpenWeatherMap API key (free at openweathermap.org)
Installation
- Clone this repository:
git clone git@github.com:mattiaperi/openweathermap-mcp-server.git
cd openweathermap-mcp-server
- Create a virtual environment:
python3 -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
- Install dependencies:
pip3 install -r requirements.txt
- Set your OpenWeatherMap API key:
export OPENWEATHER_API_KEY="your_api_key_here"
Usage
Running the Server
python server.py
Testing with the Client
python test_mcp_client.py Milan
# or
python test_mcp_client.py # Will prompt for city name
Using with Amazon Q
- Create
.amazonq/mcp.jsonin your project:
{
"mcpServers": {
"weather": {
"command": ".venv/bin/python",
"args": ["server.py"],
"env": {}
}
}
}
- Restart Amazon Q and ask: "What's the weather like in Tokyo?"
Available Tools
get_current_weather(city: str)
Returns current weather conditions including temperature, humidity, pressure, and weather description.
get_weather_forecast(city: str)
Returns a 5-day weather forecast with data points every 3 hours.
get_air_pollution(city: str)
Returns air quality data including AQI and pollutant concentrations (CO, NO, NO2, O3, SO2, PM2.5, PM10, NH3).
API Response Format
All tools return the complete OpenWeatherMap API response, allowing LLMs to extract relevant information based on context. Error responses include an error field with descriptive messages.
Development
Project Structure
├── server.py # MCP server implementation
├── requirements.txt # Python dependencies
└── README.md # This file
Adding New Tools
- Define a function with type hints
- Add the
@mcp.tooldecorator - Include a descriptive docstring
- Handle errors gracefully
Example:
@mcp.tool
def get_uv_index(city: str) -> dict:
"""Get UV index data for a city."""
# Implementation here
Security Notes
- Never commit API keys to version control
- Use environment variables for sensitive data
- Consider rate limiting for production use
- Validate input parameters
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
License
MIT License - see LICENSE file for details
Resources
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。