Opus MCP Server

Opus MCP Server

Enables programmatic interaction with Opus workflow automation platform, allowing users to initiate jobs, execute workflows, monitor status, upload files, and retrieve results through the Opus Job Operator API.

Category
访问服务器

README

Opus MCP Server

Model Context Protocol (MCP) server for the Opus Job Operator API. This server provides tools to programmatically interact with Opus workflows, including job initiation, execution, monitoring, and file uploads.

Quick Start: See QUICKSTART.md for 3-minute setup!
Installation: See INSTALL.md for detailed instructions
Distribution: See DISTRIBUTION.md for sharing options

Features

  • Workflow Management: Get workflow details and schemas
  • Job Operations: Initiate, execute, and monitor jobs
  • File Handling: Generate presigned URLs for secure file uploads
  • Monitoring: Check job status, retrieve results, and view audit logs

Installation

  1. Install dependencies:
npm install
  1. Build the project:
npm run build
  1. Set up environment variables:
cp .env.example .env
# Edit .env and add your OPUS_SERVICE_KEY

Getting Your API Key

  1. Navigate to the Opus platform
  2. Click My Organization at the top
  3. Click the gear icon next to your Organization's name
  4. Select API Keys from the settings menu
  5. Click + Generate API Key
  6. Copy the key (shown only once) and add to .env file

Configuration

For Claude Desktop

Add to your Claude Desktop config file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "opus": {
      "command": "node",
      "args": ["/absolute/path/to/function1 hackathon/build/index.js"],
      "env": {
        "OPUS_SERVICE_KEY": "your_service_key_here"
      }
    }
  }
}

For Other MCP Clients

Use the built executable with environment variable:

OPUS_SERVICE_KEY=your_key node build/index.js

Available Tools

1. get_workflow_details

Get workflow details including the jobPayloadSchema that defines required inputs.

Parameters:

  • workflowId (string, required): The workflow ID from Opus

Returns: Full workflow details including schema, execution estimation, and input requirements

2. initiate_job

Create a new job instance for a workflow.

Parameters:

  • workflowId (string, required): The workflow ID
  • title (string, required): Job title
  • description (string, required): Job description

Returns: jobExecutionId needed for subsequent operations

3. generate_file_upload_url

Generate presigned URLs for secure file uploads.

Parameters:

  • fileExtension (string, required): File extension with dot (e.g., .pdf, .jpeg, .png, .docx)
  • accessScope (string, optional): Access scope - all, user, workspace, or organization (default)

Returns:

  • presignedUrl: Use for uploading file via PUT request
  • fileUrl: Use this URL in job execution payload

Supported File Types: .jpeg, .png, .jpg, .pdf, .docx, .csv, .xls, .xlsx, .txt, .json, .html, .xml

4. execute_job

Execute a job with populated input values.

Parameters:

  • jobExecutionId (string, required): From initiate_job response
  • jobPayloadSchemaInstance (object, required): Job inputs structured according to workflow schema

Example jobPayloadSchemaInstance:

{
  "workflow_input_we4tej0ly": {
    "value": "API Test Project",
    "type": "str"
  },
  "workflow_input_a0hk6ujuo": {
    "value": 45.8,
    "type": "float"
  },
  "workflow_input_h69vx5i4a": {
    "value": "https://files.opus.com/media/private/uploaded/media_file.pdf",
    "type": "file"
  }
}

5. get_job_status

Check current job execution status.

Parameters:

  • jobExecutionId (string, required): The job ID

Returns: Status - IN PROGRESS, COMPLETED, or FAILED

6. get_job_results

Retrieve results from a completed job.

Parameters:

  • jobExecutionId (string, required): The job ID

Returns: Job results including output files and data (only works when status is COMPLETED)

7. get_job_audit_log

Get detailed audit log of job execution.

Parameters:

  • jobExecutionId (string, required): The job ID

Returns: Timestamped log of all system actions

Workflow Example

1. Get workflow details to understand required inputs
   → get_workflow_details(workflowId: "B9uGJfZ3CFwOdMKH")

2. (If needed) Generate file upload URLs
   → generate_file_upload_url(fileExtension: ".pdf")
   → Upload file to presignedUrl using PUT request

3. Initiate a job
   → initiate_job(workflowId, title, description)
   → Save jobExecutionId

4. Execute the job with inputs
   → execute_job(jobExecutionId, jobPayloadSchemaInstance)

5. Monitor status
   → get_job_status(jobExecutionId)

6. Get results when complete
   → get_job_results(jobExecutionId)

7. (Optional) View audit log
   → get_job_audit_log(jobExecutionId)

Development

Watch mode for development:

npm run watch

API Documentation

For complete API details, see the markdown files in the root directory:

  • opus-00-get-workflow-details.md - Workflow schema retrieval
  • opus-03-initiate-job.md - Job initiation
  • opus-04-uploading-files-for-job-inputs.md - File uploads
  • opus-05-execute-job.md - Job execution
  • opus-06-get-job-execution-status.md - Status monitoring
  • opus-07-get-job-execution-results.md - Results retrieval
  • opus-08-job-audit-log.md - Audit logs

Base URL

All requests are made to: https://operator.opus.com

Troubleshooting

Error: OPUS_SERVICE_KEY environment variable is required

  • Ensure your .env file exists with the correct key, or
  • Set the environment variable in your MCP client configuration

Error: Authentication failed

  • Verify your service key is valid and not expired
  • Check that the key has proper permissions in Opus

File upload issues

  • Ensure file extension matches the actual file type
  • Use PUT request without authentication headers for presigned URL
  • Verify file size limits (if any) in Opus documentation

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选