Orcho MCP Server

Orcho MCP Server

Provides real-time security risk assessment for AI coding prompts, analyzing potential dangers, blast radius, and complexity before code execution in Cursor.

Category
访问服务器

README

Orcho MCP Server for Cursor

Risk assessment for AI coding prompts - Automatically analyze your coding requests for security and safety risks before execution.

🚀 Quick Install

Click this link to automatically install in Cursor:

cursor://anysphere.cursor-deeplink/mcp/install?name=orcho&config=eyJuYW1lIjoib3JjaG8iLCJ0eXBlIjoic3RkaW8iLCJjb21tYW5kIjoibnB4IiwiYXJncyI6WyIteSIsIkBvcmNob19yaXNrL21jcC1zZXJ2ZXIiXSwiZW52Ijp7Ik9SQ0hPX0FQSV9LRVkiOiJ0ZXN0X2tleV9vcmNob18xMjM0NSJ9fQ==

How to use:

  1. Copy the link above
  2. Paste it into your browser's address bar and press Enter
  3. Cursor will open and automatically configure the MCP server
  4. Replace the test API key with your real key (see API Configuration)
  5. Restart Cursor to activate
  6. Replace the test API key with your real key (see API Configuration)
  7. Restart Cursor to activate the MCP server

What is Orcho??

Orcho analyzes your coding prompts in real-time to identify potential security risks, dangerous operations, and safety concerns before code is generated or executed.

Features

  • 🔍 Real-time Risk Assessment - Analyze prompts using Orcho's risk analysis API
  • 📁 Context-Aware - Automatically includes file context for accurate blast radius and complexity analysis
  • 🛡️ Security First - Identifies high-risk prompts before execution
  • 🔌 Seamless Integration - Works natively with Cursor's Model Context Protocol

Installation

Option 1: One-Click Install (Recommended)

Copy and paste this link into your browser:

cursor://anysphere.cursor-deeplink/mcp/install?name=orcho&config=eyJuYW1lIjoib3JjaG8iLCJ0eXBlIjoic3RkaW8iLCJjb21tYW5kIjoibnB4IiwiYXJncyI6WyIteSIsIkBvcmNob19yaXNrL21jcC1zZXJ2ZXIiXSwiZW52Ijp7Ik9SQ0hPX0FQSV9LRVkiOiJ0ZXN0X2tleV9vcmNob18xMjM0NSJ9fQ==

This automatically:

  • ✅ Configures the MCP server in Cursor
  • ✅ Sets up auto-installation via npx
  • ⚠️ Next step: Replace the test API key with your real key (see below)
  • ⚠️ Then: Restart Cursor

Option 2: Manual Installation

  1. Install the package:

    npm install -g @orcho_risk/mcp-server
    
  2. Configure Cursor:

    Create or edit ~/.cursor/mcp.json (Windows: C:\Users\<YourUsername>\.cursor\mcp.json):

    {
      "mcpServers": {
        "orcho": {
          "command": "npx",
          "args": ["-y", "@orcho_risk/mcp-server"],
          "env": {
            "ORCHO_API_KEY": "your-api-key-here"
          }
        }
      }
    }
    
  3. Restart Cursor completely (quit and reopen)


API Configuration

Get Your API Key

  1. Sign up at app.orcho.ai
  2. Navigate to API Settings (Dashboard → API Keys)
  3. Create or copy your API key
  4. Update your mcp.json file:
    • Location: ~/.cursor/mcp.json (or C:\Users\<YourUsername>\.cursor\mcp.json on Windows)
    • Replace test_key_orcho_12345 with your actual API key

Test API Key

For initial testing, you can use:

test_key_orcho_12345

Note: The test key has limited functionality and rate limits. Get your own API key from app.orcho.ai for production use.

Security Best Practices

  • Store API keys only in ~/.cursor/mcp.json (not in your project)
  • Never commit API keys to version control
  • Rotate keys immediately if accidentally exposed

Usage

Manual Assessment

In Cursor chat, type:

@orcho assess_risk: Your prompt here

Automatic Assessment (Recommended)

Enable automatic risk assessment for all prompts by adding a Cursor rule to your project.

Option 1: Project Rules (Modern - Recommended)

Copy the rule file to your project:

# Create .cursor/rules directory
mkdir -p .cursor/rules

# Copy the rule file
cp node_modules/@orcho_risk/mcp-server/.cursor/rules/orcho-risk-assessment.mdc .cursor/rules/

Or manually copy from:

node_modules/@orcho_risk/mcp-server/.cursor/rules/orcho-risk-assessment.mdc

Option 2: Legacy .cursorrules File

Copy the example rules file:

cp node_modules/@orcho_risk/mcp-server/.cursorrules.example .cursorrules

Note: Project Rules (Option 1) are the modern approach and support more features.


How It Works

Context-Aware Assessment

Orcho automatically gathers context when available:

  • Current File: Detects the file open in your editor
  • Other Files: Analyzes which files will be modified by the prompt
  • Dependency Graph: Optional project dependency information
  • Blast Radius: Calculates impact scope of changes

Example

User: "Delete all user data from the database"
→ Cursor calls: @orcho assess_risk with context
→ Risk: HIGH (score: 95)
→ Cursor warns: "⚠️ HIGH RISK: This could cause data loss. Proceed?"

Tool Parameters

  • task (required): The prompt to assess
  • current_file (recommended): Path to currently open file
  • other_files (recommended): Array of files that will be modified
  • dependency_graph (optional): Project dependency graph
  • weights (optional): Custom risk calculation weights
  • aiignore_file (optional): Path to .aiignore file

Troubleshooting

MCP Server Not Loading

  1. Check mcp.json location:

    • Mac/Linux: ~/.cursor/mcp.json
    • Windows: C:\Users\<YourUsername>\.cursor\mcp.json
  2. Verify Node.js is installed:

    node --version  # Requires v18+
    
  3. Check Cursor Developer Tools:

    • Help → Toggle Developer Tools
    • Look for MCP-related errors in Console

API Errors

  • Invalid API Key: Verify the key is correct in mcp.json
  • Rate Limits: Check your account quota at app.orcho.ai
  • No API Key: The server will use the test key by default (limited functionality)

Still Having Issues?

  • Check that Cursor is fully restarted (quit and reopen)
  • Verify your API key is valid at app.orcho.ai
  • Ensure you have internet connectivity

License

MIT

Support

For issues and questions:

  • GitHub Issues: [Your Repo URL]
  • Orcho Support: [Support URL]

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选