Oura Ring MCP Server

Oura Ring MCP Server

Enables AI assistants to access and analyze Oura Ring health data including sleep, readiness, activity, and stress metrics. Supports customizable queries, correlation analysis, and visualization capabilities for comprehensive health insights.

Category
访问服务器

README

Oura Ring Model Controller Protocol (MCP) Server

This server enables AI assistants to access and analyze your Oura Ring data through the Model Controller Protocol (MCP). It provides a structured way to fetch and understand your health metrics.

Features

  • Secure access to your Oura Ring data
  • Pre-defined prompts for common health analysis tasks
  • Customizable queries for specific health insights
  • Support for analyzing correlations between different metrics
  • Proper handling of time units and calculation guidelines
  • Visualization capabilities for health metrics

Getting Started

Prerequisites

  • Node.js v18 or higher
  • An Oura Ring account with Personal Access Token

Installation

  1. Clone the repository:

    git clone https://github.com/yourusername/oura-mcp-server.git
    cd oura-mcp-server
    
  2. Install dependencies:

    npm install
    
  3. Create a .env file in the root directory with your Oura API token:

    OURA_TOKEN=your_personal_access_token_here
    
  4. Build the project:

    npm run build
    
  5. Start the server:

    npm start
    

Getting an Oura Personal Access Token

  1. Go to the Oura Developer website
  2. Log in with your Oura account
  3. Create a new Personal Access Token
  4. Copy the token to your .env file

Example Prompts

You can ask Claude things like:

  • "Show me my sleep data for the last week and explain what it means"
  • "Analyze how my meals affect my readiness scores"
  • "Compare my stress levels on workdays versus weekends"
  • "Show me my heart rate during sleep for nights when I had alcohol"
  • "Visualize my sleep efficiency trends for the past month" (Claude will generate charts!)
  • "Create a visualization comparing my readiness scores after different meals"

Data Visualization

Claude can create visual charts to help you understand your health data. Simply ask Claude to "visualize" or "create a chart" of specific metrics. For example:

  • "Visualize my sleep stages over the past week"
  • "Create a chart showing the correlation between HRV and sleep quality"
  • "Make a bar graph comparing my activity scores by day of week"
  • "Plot my resting heart rate against stress levels"

Demo

Sleep Analysis

Sleep Composition

HRV

Data Handling Guidelines

This server follows these key guidelines:

  • All duration fields are in seconds and converted to hours/minutes for display
  • Sleep percentages are calculated using total_sleep_duration as denominator
  • Sleep efficiency is calculated as (total_sleep_duration / time_in_bed * 100)
  • Custom tags contain meal information in the comment field

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选