Outlook MCP

Outlook MCP

Enables semantic search and AI-powered analysis of Outlook emails using RAG-based natural language queries and Vision AI for architectural documents, with specialized support for AEC workflows.

Category
访问服务器

README

📧 AEC Outlook MCP - AEC-Specialized AI Email Intelligence

An MCP (Model Context Protocol) server that transforms Outlook email management with RAG-based semantic search and Vision AI for architectural document analysis - built specifically for Architecture, Engineering & Construction workflows.

Version Status License: MIT Python 3.10+

🎯 Built for AEC Professionals

Unlike generic email tools, this is designed for the unique challenges of architectural practice:

🔍 Semantic Search with RAG

  • ChromaDB vector database for intelligent email indexing
  • Natural language queries: "Find emails about the BIM coordination meeting"
  • Attachment content search: Search inside PDFs, Word docs, Excel files

👁️ Multi-Modal Vision AI

  • Claude Vision API for architectural drawing analysis
  • Gemini Vision API for technical document processing
  • Specialized prompts for floor plans, elevations, sections, details
  • OCR fallback with Tesseract (Korean + English)

🏗️ AEC-Specific Features

  • Bilingual support: Korean + English for international projects
  • Technical drawing analysis: Understands architectural documents
  • RFI/Submittal parsing: Extract key information from construction docs
  • 100% Local processing: Email data never leaves your machine

📋 Features Overview

Feature Description
Semantic Search Natural language email queries via RAG
Vision AI Claude + Gemini for image/PDF analysis
Attachment Parsing PDF, Word, Excel, Images
Date/Sender Filters Metadata-based search
Folder Navigation Access all Outlook folders
Local Processing Complete privacy, no cloud upload

🛠️ Installation

git clone https://github.com/dongwoosuk/aec-outlook-mcp.git
cd aec-outlook-mcp
python -m venv .venv
.venv\Scripts\activate  # Windows
pip install -e .

For OCR support:

pip install -e ".[ocr]"

For Vision AI:

pip install anthropic google-generativeai

⚙️ Configuration

Environment Variables (Optional)

# For Vision AI features
set ANTHROPIC_API_KEY=your_claude_api_key
set GOOGLE_API_KEY=your_gemini_api_key

Claude Desktop Configuration

Add to claude_desktop_config.json:

{
  "mcpServers": {
    "outlook": {
      "command": "path/to/aec_outlook_mcp/.venv/Scripts/python.exe",
      "args": ["-m", "aec_outlook_mcp"],
      "env": {
        "PYTHONPATH": "path/to/aec_outlook_mcp"
      }
    }
  }
}

📚 Available Tools

Tool Description
email_search Natural language semantic search
email_search_by_sender Filter by sender
email_search_by_date Filter by date range
email_search_attachments Search attachment contents
email_index_status Check indexing progress
email_index_refresh Index new emails
email_get_detail Get full email details
email_list_folders List Outlook folders

💡 Usage Examples

In Claude Desktop:

"Find emails from the structural engineer about beam calculations"

"Search for RFI responses from last week"

"Find all emails with PDF attachments about the facade design"

"What did the contractor say about the schedule delay?"

Vision AI for Attachments:

"Analyze the floor plan attached in John's email"

"What dimensions are shown in this elevation drawing?"

"Extract the specification details from the attached PDF"

🏗️ Architecture

aec_outlook_mcp/
├── aec_outlook_mcp/
│   ├── server.py           # Main MCP server
│   ├── outlook_reader.py   # Win32com Outlook integration
│   ├── email_indexer.py    # ChromaDB RAG indexing
│   ├── attachment_parser.py # PDF/Word/Excel/Vision AI
│   ├── config.py           # Configuration management
│   └── cli.py              # Command-line interface
└── pyproject.toml

🔧 Technical Stack

Component Technology
Email Access win32com (Outlook COM API)
Vector DB ChromaDB
Embeddings sentence-transformers (all-MiniLM-L6-v2)
PDF Parsing PyMuPDF
Word Parsing python-docx
Excel Parsing openpyxl
OCR Tesseract (kor+eng)
Vision AI Anthropic Claude, Google Gemini

🎯 Use Cases

For Project Architects (PA)

  • Quickly find client feedback across hundreds of emails
  • Search RFI responses and submittal approvals
  • Track consultant coordination threads

For Project Managers (PM)

  • Search contract and schedule discussions
  • Find meeting notes and action items
  • Track change order communications

For Designers

  • Find design review comments
  • Search for reference images and inspiration
  • Locate specification discussions

Future: Office-Wide Deployment

  • Centralized email intelligence for entire teams
  • Shared knowledge base across projects
  • AI-powered email analytics and reporting

⚠️ Requirements

  • Windows with Outlook Desktop app installed and logged in
  • Python 3.10+
  • Outlook must be running for email access

🔒 Privacy & Security

  • 100% local processing: Emails are indexed locally in ChromaDB
  • No cloud upload: Email content never leaves your machine
  • API keys optional: Vision AI features require API keys, but core search works without them
  • Data location: C:\Users\{USERNAME}\Documents\OutlookMCP\

📄 License

MIT License - see LICENSE file.

🙏 Acknowledgments

  • Built on the Model Context Protocol by Anthropic
  • ChromaDB for vector storage
  • sentence-transformers for embeddings

📬 Contact

Dongwoo Suk - Computational Design Specialist

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选