Outlook MCP
Enables semantic search and AI-powered analysis of Outlook emails using RAG-based natural language queries and Vision AI for architectural documents, with specialized support for AEC workflows.
README
📧 AEC Outlook MCP - AEC-Specialized AI Email Intelligence
An MCP (Model Context Protocol) server that transforms Outlook email management with RAG-based semantic search and Vision AI for architectural document analysis - built specifically for Architecture, Engineering & Construction workflows.
🎯 Built for AEC Professionals
Unlike generic email tools, this is designed for the unique challenges of architectural practice:
🔍 Semantic Search with RAG
- ChromaDB vector database for intelligent email indexing
- Natural language queries: "Find emails about the BIM coordination meeting"
- Attachment content search: Search inside PDFs, Word docs, Excel files
👁️ Multi-Modal Vision AI
- Claude Vision API for architectural drawing analysis
- Gemini Vision API for technical document processing
- Specialized prompts for floor plans, elevations, sections, details
- OCR fallback with Tesseract (Korean + English)
🏗️ AEC-Specific Features
- Bilingual support: Korean + English for international projects
- Technical drawing analysis: Understands architectural documents
- RFI/Submittal parsing: Extract key information from construction docs
- 100% Local processing: Email data never leaves your machine
📋 Features Overview
| Feature | Description |
|---|---|
| Semantic Search | Natural language email queries via RAG |
| Vision AI | Claude + Gemini for image/PDF analysis |
| Attachment Parsing | PDF, Word, Excel, Images |
| Date/Sender Filters | Metadata-based search |
| Folder Navigation | Access all Outlook folders |
| Local Processing | Complete privacy, no cloud upload |
🛠️ Installation
git clone https://github.com/dongwoosuk/aec-outlook-mcp.git
cd aec-outlook-mcp
python -m venv .venv
.venv\Scripts\activate # Windows
pip install -e .
For OCR support:
pip install -e ".[ocr]"
For Vision AI:
pip install anthropic google-generativeai
⚙️ Configuration
Environment Variables (Optional)
# For Vision AI features
set ANTHROPIC_API_KEY=your_claude_api_key
set GOOGLE_API_KEY=your_gemini_api_key
Claude Desktop Configuration
Add to claude_desktop_config.json:
{
"mcpServers": {
"outlook": {
"command": "path/to/aec_outlook_mcp/.venv/Scripts/python.exe",
"args": ["-m", "aec_outlook_mcp"],
"env": {
"PYTHONPATH": "path/to/aec_outlook_mcp"
}
}
}
}
📚 Available Tools
| Tool | Description |
|---|---|
email_search |
Natural language semantic search |
email_search_by_sender |
Filter by sender |
email_search_by_date |
Filter by date range |
email_search_attachments |
Search attachment contents |
email_index_status |
Check indexing progress |
email_index_refresh |
Index new emails |
email_get_detail |
Get full email details |
email_list_folders |
List Outlook folders |
💡 Usage Examples
In Claude Desktop:
"Find emails from the structural engineer about beam calculations"
"Search for RFI responses from last week"
"Find all emails with PDF attachments about the facade design"
"What did the contractor say about the schedule delay?"
Vision AI for Attachments:
"Analyze the floor plan attached in John's email"
"What dimensions are shown in this elevation drawing?"
"Extract the specification details from the attached PDF"
🏗️ Architecture
aec_outlook_mcp/
├── aec_outlook_mcp/
│ ├── server.py # Main MCP server
│ ├── outlook_reader.py # Win32com Outlook integration
│ ├── email_indexer.py # ChromaDB RAG indexing
│ ├── attachment_parser.py # PDF/Word/Excel/Vision AI
│ ├── config.py # Configuration management
│ └── cli.py # Command-line interface
└── pyproject.toml
🔧 Technical Stack
| Component | Technology |
|---|---|
| Email Access | win32com (Outlook COM API) |
| Vector DB | ChromaDB |
| Embeddings | sentence-transformers (all-MiniLM-L6-v2) |
| PDF Parsing | PyMuPDF |
| Word Parsing | python-docx |
| Excel Parsing | openpyxl |
| OCR | Tesseract (kor+eng) |
| Vision AI | Anthropic Claude, Google Gemini |
🎯 Use Cases
For Project Architects (PA)
- Quickly find client feedback across hundreds of emails
- Search RFI responses and submittal approvals
- Track consultant coordination threads
For Project Managers (PM)
- Search contract and schedule discussions
- Find meeting notes and action items
- Track change order communications
For Designers
- Find design review comments
- Search for reference images and inspiration
- Locate specification discussions
Future: Office-Wide Deployment
- Centralized email intelligence for entire teams
- Shared knowledge base across projects
- AI-powered email analytics and reporting
⚠️ Requirements
- Windows with Outlook Desktop app installed and logged in
- Python 3.10+
- Outlook must be running for email access
🔒 Privacy & Security
- 100% local processing: Emails are indexed locally in ChromaDB
- No cloud upload: Email content never leaves your machine
- API keys optional: Vision AI features require API keys, but core search works without them
- Data location:
C:\Users\{USERNAME}\Documents\OutlookMCP\
📄 License
MIT License - see LICENSE file.
🙏 Acknowledgments
- Built on the Model Context Protocol by Anthropic
- ChromaDB for vector storage
- sentence-transformers for embeddings
📬 Contact
Dongwoo Suk - Computational Design Specialist
- GitHub: dongwoosuk
- LinkedIn: dongwoosuk
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。