Outsource MCP

Outsource MCP

An MCP server that enables AI applications to access 20+ model providers (including OpenAI, Anthropic, Google) through a unified interface for text and image generation.

Category
访问服务器

README

Outsource MCP

An MCP (Model Context Protocol) server that enables AI applications to outsource tasks to various model providers through a unified interface.

<img width="1154" alt="image" src="https://github.com/user-attachments/assets/cd364a7c-eae5-4c58-bc1f-fdeea6cb8434" />

<img width="1103" alt="image" src="https://github.com/user-attachments/assets/55924981-83e9-4811-9f51-b049595b7505" />

Compatible with any AI tool that supports the Model Context Protocol, including Claude Desktop, Cline, and other MCP-enabled applications. Built with FastMCP for the MCP server implementation and Agno for AI agent capabilities.

Features

  • 🤖 Multi-Provider Support: Access 20+ AI providers through a single interface
  • 📝 Text Generation: Generate text using models from OpenAI, Anthropic, Google, and more
  • 🎨 Image Generation: Create images using DALL-E 3 and DALL-E 2
  • 🔧 Simple API: Consistent interface with just three parameters: provider, model, and prompt
  • 🔑 Flexible Authentication: Only configure API keys for the providers you use

Configuration

Add the following configuration to your MCP client. Consult your MCP client's documentation for specific configuration details.

{
  "mcpServers": {
    "outsource-mcp": {
      "command": "uvx",
      "args": ["--from", "git+https://github.com/gwbischof/outsource-mcp.git", "outsource-mcp"],
      "env": {
        "OPENAI_API_KEY": "your-openai-key",
        "ANTHROPIC_API_KEY": "your-anthropic-key",
        "GOOGLE_API_KEY": "your-google-key",
        "GROQ_API_KEY": "your-groq-key",
        "DEEPSEEK_API_KEY": "your-deepseek-key",
        "XAI_API_KEY": "your-xai-key",
        "PERPLEXITY_API_KEY": "your-perplexity-key",
        "COHERE_API_KEY": "your-cohere-key",
        "FIREWORKS_API_KEY": "your-fireworks-key",
        "HUGGINGFACE_API_KEY": "your-huggingface-key",
        "MISTRAL_API_KEY": "your-mistral-key",
        "NVIDIA_API_KEY": "your-nvidia-key",
        "OLLAMA_HOST": "http://localhost:11434",
        "OPENROUTER_API_KEY": "your-openrouter-key",
        "TOGETHER_API_KEY": "your-together-key",
        "CEREBRAS_API_KEY": "your-cerebras-key",
        "DEEPINFRA_API_KEY": "your-deepinfra-key",
        "SAMBANOVA_API_KEY": "your-sambanova-key"
      }
    }
  }
}

Note: The environment variables are optional. Only include the API keys for the providers you want to use.

Quick Start

Once installed and configured, you can use the tools in your MCP client:

  1. Generate text: Use the outsource_text tool with provider "openai", model "gpt-4o-mini", and prompt "Write a haiku about coding"
  2. Generate images: Use the outsource_image tool with provider "openai", model "dall-e-3", and prompt "A futuristic city skyline at sunset"

Tools

outsource_text

Creates an Agno agent with a specified provider and model to generate text responses.

Arguments:

  • provider: The provider name (e.g., "openai", "anthropic", "google", "groq", etc.)
  • model: The model name (e.g., "gpt-4o", "claude-3-5-sonnet-20241022", "gemini-2.0-flash-exp")
  • prompt: The text prompt to send to the model

outsource_image

Generates images using AI models.

Arguments:

  • provider: The provider name (currently only "openai" is supported)
  • model: The model name ("dall-e-3" or "dall-e-2")
  • prompt: The image generation prompt

Returns the URL of the generated image.

Note: Image generation is currently only supported by OpenAI models (DALL-E 2 and DALL-E 3). Other providers only support text generation.

Supported Providers

The following providers are supported. Use the provider name (in parentheses) as the provider argument:

Core Providers

  • OpenAI (openai) - GPT-4, GPT-3.5, DALL-E, etc. | Models
  • Anthropic (anthropic) - Claude 3.5, Claude 3, etc. | Models
  • Google (google) - Gemini Pro, Gemini Flash, etc. | Models
  • Groq (groq) - Llama 3, Mixtral, etc. | Models
  • DeepSeek (deepseek) - DeepSeek Chat & Coder | Models
  • xAI (xai) - Grok models | Models
  • Perplexity (perplexity) - Sonar models | Models

Additional Providers

  • Cohere (cohere) - Command models | Models
  • Mistral AI (mistral) - Mistral Large, Medium, Small | Models
  • NVIDIA (nvidia) - Various models | Models
  • HuggingFace (huggingface) - Open source models | Models
  • Ollama (ollama) - Local models | Models
  • Fireworks AI (fireworks) - Fast inference | Models
  • OpenRouter (openrouter) - Multi-provider access | Models
  • Together AI (together) - Open source models | Models
  • Cerebras (cerebras) - Fast inference | Models
  • DeepInfra (deepinfra) - Optimized models | Models
  • SambaNova (sambanova) - Enterprise models | Models

Enterprise Providers

  • AWS Bedrock (aws or bedrock) - AWS-hosted models | Models
  • Azure AI (azure) - Azure-hosted models | Models
  • IBM WatsonX (ibm or watsonx) - IBM models | Models
  • LiteLLM (litellm) - Universal interface | Models
  • Vercel v0 (vercel or v0) - Vercel AI | Models
  • Meta Llama (meta) - Direct Meta access | Models

Environment Variables

Each provider requires its corresponding API key:

Provider Environment Variable Example
OpenAI OPENAI_API_KEY sk-...
Anthropic ANTHROPIC_API_KEY sk-ant-...
Google GOOGLE_API_KEY AIza...
Groq GROQ_API_KEY gsk_...
DeepSeek DEEPSEEK_API_KEY sk-...
xAI XAI_API_KEY xai-...
Perplexity PERPLEXITY_API_KEY pplx-...
Cohere COHERE_API_KEY ...
Fireworks FIREWORKS_API_KEY ...
HuggingFace HUGGINGFACE_API_KEY hf_...
Mistral MISTRAL_API_KEY ...
NVIDIA NVIDIA_API_KEY nvapi-...
Ollama OLLAMA_HOST http://localhost:11434
OpenRouter OPENROUTER_API_KEY ...
Together TOGETHER_API_KEY ...
Cerebras CEREBRAS_API_KEY ...
DeepInfra DEEPINFRA_API_KEY ...
SambaNova SAMBANOVA_API_KEY ...
AWS Bedrock AWS credentials Via AWS CLI/SDK
Azure AI Azure credentials Via Azure CLI/SDK
IBM WatsonX IBM_WATSONX_API_KEY ...
Meta Llama LLAMA_API_KEY ...

Note: Only configure the API keys for providers you plan to use.

Examples

Text Generation

# Using OpenAI
provider: openai
model: gpt-4o-mini
prompt: Write a haiku about coding

# Using Anthropic
provider: anthropic
model: claude-3-5-sonnet-20241022
prompt: Explain quantum computing in simple terms

# Using Google
provider: google
model: gemini-2.0-flash-exp
prompt: Create a recipe for chocolate chip cookies

Image Generation

# Using DALL-E 3
provider: openai
model: dall-e-3
prompt: A serene Japanese garden with cherry blossoms

# Using DALL-E 2
provider: openai
model: dall-e-2
prompt: A futuristic cityscape at sunset

Development

Prerequisites

  • Python 3.11 or higher
  • uv package manager

Setup

git clone https://github.com/gwbischof/outsource-mcp.git
cd outsource-mcp
uv sync

Testing with MCP Inspector

The MCP Inspector allows you to test the server interactively:

mcp dev server.py

Running Tests

The test suite includes integration tests that verify both text and image generation:

# Run all tests
uv run pytest

Note: Integration tests require API keys to be set in your environment.

Troubleshooting

Common Issues

  1. "Error: Unknown provider"

    • Check that you're using a supported provider name from the list above
    • Provider names are case-insensitive
  2. "Error: OpenAI API error"

    • Verify your API key is correctly set in the environment variables
    • Check that your API key has access to the requested model
    • Ensure you have sufficient credits/quota
  3. "Error: No image was generated"

    • This can happen if the image generation request fails
    • Try a simpler prompt or different model (dall-e-2 vs dall-e-3)
  4. Environment variables not working

    • Make sure to restart your MCP client after updating the configuration
    • Verify the configuration file location for your specific MCP client
    • Check that the environment variables are properly formatted in the configuration

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选