Overwatch MCP
An MCP server that enables querying logs and metrics from Graylog, Prometheus, and InfluxDB 2.x. It provides tools for executing Lucene log searches, PromQL queries, and Flux queries directly within MCP-compatible clients.
README
Overwatch MCP
MCP server for querying Graylog, Prometheus, and InfluxDB 2.x from Claude Desktop.
Tools
| Tool | What it does |
|---|---|
graylog_search |
Search logs (Lucene syntax) |
graylog_fields |
List log fields |
prometheus_query |
Instant PromQL query |
prometheus_query_range |
Range PromQL query |
prometheus_metrics |
List metrics |
influxdb_query |
Flux query (bucket allowlisted) |
Quick Start
One-Line Setup (Docker)
curl -fsSL https://raw.githubusercontent.com/malindarathnayake/Overwatch-mcp/main/compose/setup.sh | bash
cd Overwatch_MCP
# Edit .env and config.yaml with your values
docker compose up -d
Manual Setup (Docker)
# Download compose files
mkdir -p Overwatch_MCP && cd Overwatch_MCP
curl -fsSLO https://raw.githubusercontent.com/malindarathnayake/Overwatch-mcp/main/compose/docker-compose.yml
curl -fsSLO https://raw.githubusercontent.com/malindarathnayake/Overwatch-mcp/main/compose/.env.example
curl -fsSLO https://raw.githubusercontent.com/malindarathnayake/Overwatch-mcp/main/compose/config.example.yaml
# Create config from templates
cp .env.example .env
cp config.example.yaml config.yaml
# Edit .env with your credentials
# Edit config.yaml if needed (adjust allowed_buckets, limits, etc.)
# Run
docker compose up -d
Local Install
pip install -e .
cp .env.example .env
cp config/config.example.yaml config/config.yaml
# Edit both files with your values
python -m overwatch_mcp
Claude Desktop Config
Docker
~/.claude/config.json (Linux/Mac) or %APPDATA%\Claude\config.json (Windows):
{
"mcpServers": {
"overwatch": {
"command": "docker",
"args": [
"run", "--rm", "-i",
"-v", "/path/to/config:/app/config:ro",
"--env-file", "/path/to/.env",
"ghcr.io/malindarathnayake/Overwatch-mcp:latest"
]
}
}
}
Local Python
{
"mcpServers": {
"overwatch": {
"command": "python",
"args": ["-m", "overwatch_mcp"],
"env": {
"GRAYLOG_URL": "https://graylog.internal:9000/api",
"GRAYLOG_TOKEN": "your-token",
"PROMETHEUS_URL": "http://prometheus.internal:9090",
"INFLUXDB_URL": "https://influxdb.internal:8086",
"INFLUXDB_TOKEN": "your-token",
"INFLUXDB_ORG": "your-org"
}
}
}
}
Windows PowerShell Setup
One-shot script to configure Claude Desktop on Windows:
# Stop Claude if running
Get-Process -Name "Claude*" -ErrorAction SilentlyContinue | Stop-Process -Force
$config = @'
{
"mcpServers": {
"overwatch": {
"command": "C:/Users/<USERNAME>/AppData/Local/Microsoft/WindowsApps/python3.13.exe",
"args": ["-m", "overwatch_mcp", "--config", "C:/path/to/Overwatch-mcp/compose/config.yaml"],
"env": {
"GRAYLOG_URL": "https://your-graylog-url",
"GRAYLOG_TOKEN": "<YOUR_GRAYLOG_TOKEN>",
"PROMETHEUS_URL": "http://your-prometheus-url:9090",
"INFLUXDB_URL": "https://your-influxdb-url",
"INFLUXDB_TOKEN": "<YOUR_INFLUXDB_TOKEN>",
"INFLUXDB_ORG": "<YOUR_INFLUXDB_ORG>",
"LOG_LEVEL": "debug",
"LOG_FILE": "C:/path/to/Overwatch-mcp/overwatch.log"
}
}
}
}
'@
[System.IO.File]::WriteAllText("$env:APPDATA\Claude\claude_desktop_config.json", $config)
# Install from source (run from repo root)
cd C:\path\to\Overwatch-mcp
pip install -e .
Note: Replace <USERNAME>, <YOUR_GRAYLOG_TOKEN>, <YOUR_INFLUXDB_TOKEN>, <YOUR_INFLUXDB_ORG>, and paths with your actual values.
Configuration
config.yaml
The config uses ${ENV_VAR} substitution - values come from environment at runtime.
server:
log_level: "info"
datasources:
graylog:
enabled: true
url: "${GRAYLOG_URL}"
token: "${GRAYLOG_TOKEN}"
timeout_seconds: 30
max_time_range_hours: 24
max_results: 1000
# Production environments to filter on (auto-builds from known_applications.json)
production_environments:
- "prod"
- "production"
# Known apps file - auto-builds env filter from discovered data
known_applications_file: "${GRAYLOG_KNOWN_APPS_FILE:-}"
prometheus:
enabled: true
url: "${PROMETHEUS_URL}"
timeout_seconds: 30
max_range_hours: 168
influxdb:
enabled: true
url: "${INFLUXDB_URL}"
token: "${INFLUXDB_TOKEN}"
org: "${INFLUXDB_ORG}"
timeout_seconds: 60
allowed_buckets:
- "telegraf"
- "app_metrics"
cache:
enabled: true
default_ttl_seconds: 60
Disable a datasource by setting enabled: false. Server runs in degraded mode if some datasources fail health checks.
Tool Parameters
graylog_search
{
"query": "level:ERROR AND service:api",
"from_time": "-2h",
"to_time": "now",
"limit": 100,
"fields": ["timestamp", "message", "level"]
}
Time formats: ISO8601 (2025-01-27T10:00:00Z), relative (-1h, -30m), now
graylog_fields
{
"pattern": "http_.*",
"limit": 100
}
prometheus_query
{
"query": "rate(http_requests_total[5m])",
"time": "-1h"
}
prometheus_query_range
{
"query": "up",
"start": "-6h",
"end": "now",
"step": "1m"
}
Step auto-calculated if omitted.
prometheus_metrics
{
"pattern": "http_.*",
"limit": 100
}
influxdb_query
{
"query": "from(bucket: \"telegraf\") |> range(start: -1h) |> filter(fn: (r) => r._measurement == \"cpu\")",
"bucket": "telegraf"
}
Bucket must be in allowed_buckets config.
Error Codes
| Code | Meaning |
|---|---|
DATASOURCE_DISABLED |
Datasource disabled in config |
DATASOURCE_UNAVAILABLE |
Failed health check |
INVALID_QUERY |
Bad query syntax |
INVALID_PATTERN |
Bad regex |
TIME_RANGE_EXCEEDED |
Range exceeds max |
BUCKET_NOT_ALLOWED |
Bucket not in allowlist |
UPSTREAM_TIMEOUT |
Request timed out |
UPSTREAM_CLIENT_ERROR |
4xx from datasource |
UPSTREAM_SERVER_ERROR |
5xx from datasource |
Application Discovery
Generate a known applications file to speed up lookups:
# Using environment variables
python scripts/discover_applications.py --env
# Or with explicit credentials
python scripts/discover_applications.py \
--url https://graylog.example.com \
--token YOUR_TOKEN \
--hours 24 \
--environment "environment:prod" \
--output known_applications.json
Output known_applications.json:
{
"_metadata": {
"generated_at": "2025-01-28T10:00:00",
"identifier_fields_used": ["application", "service", "container_name"]
},
"environments": ["prod", "staging", "dev"],
"applications": [
{
"name": "api-gateway",
"identifier_fields": ["service", "application"],
"aliases": [],
"description": "",
"team": "",
"enabled": true
}
]
}
Edit the file to:
- Remove entries you don't need (
enabled: false) - Add descriptions and team ownership
- Add aliases for alternative names
Then set GRAYLOG_KNOWN_APPS_FILE=/path/to/known_applications.json in your environment.
Development
# Install with dev deps
pip install -e ".[dev]"
# Tests
pytest tests/ -v
# Coverage
pytest tests/ -v --cov=overwatch_mcp
Project Structure
src/overwatch_mcp/
├── __main__.py # Entry point
├── server.py # MCP server
├── config.py # Config loader
├── cache.py # TTL cache
├── clients/ # HTTP clients (graylog, prometheus, influxdb)
├── tools/ # MCP tool implementations
└── models/ # Pydantic models
127 tests (89 unit, 38 integration).
Usage Guide
See Docs/usage-guide.md for examples of how to ask questions:
- Finding errors and investigating issues
- Searching logs with filters and time ranges
- Querying metrics and trends
- Investigation workflows and common patterns
Troubleshooting
Server won't start: Check config/config.yaml exists and env vars are set.
Datasource unavailable: Verify URL, check token permissions. Server continues with available datasources.
Query errors: Check syntax (Lucene/PromQL/Flux), verify time range within limits, ensure bucket is allowlisted for InfluxDB.
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。