OXII Smart Home MCP Server
Enables control of OXII smart home devices through the Model Context Protocol, supporting device switching, air conditioner control, cronjobs, and room scenarios. Integrates with chatbots and MCP-compatible clients for natural language home automation.
README
OXII Smart Home MCP Server
Modern documentation for the device-control MCP stack that pairs with the FastAPI chatbot. Use this guide the same way you would the chatbot docs: it covers setup, commands, tooling, and troubleshooting for standalone MCP development.
🔎 Overview
| Purpose | Expose OXII smart home controls (device info, switching, AC, cronjobs, one-touch, room scenarios) via the Model Context Protocol (MCP). |
| Transport | Server Sent Events (SSE) on port 9031. |
| Runtime | Python 3.10+, mcp.server.FastMCP with LangChain MCP adapters. |
| Consumers | The FastAPI chatbot (chatbot/) or any MCP-compatible client. |
mcp/oxii-server/
├── main.py # Boots the FastMCP process and registers tools
├── tools/ # Tool implementations (auth, device control, cronjobs…)
├── client.py # Quick demo client for manual testing
├── docker-compose.yml # Containerized runtime (exposes :9031)
└── .env.example # Sample environment for OXII credentials
✅ Prerequisites
- Python 3.10 or newer (Poetry will manage dependencies), or Docker Engine 20.10+
- OXII account credentials with device access (phone, password, country)
- Network access to the OXII staging/prod API defined in
OXII_BASE_URL
⚙️ Environment configuration
Create a working copy of the environment file and fill in the secrets:
cp .env.example .env
| Variable | Description |
|---|---|
OXII_BASE_URL |
Root URL for the OXII API (staging provided by default). |
OXII_PHONE / OXII_PASSWORD / OXII_COUNTRY |
Login used to obtain access tokens. |
PORT / HOST |
Optional overrides for where the MCP server listens (default 0.0.0.0:9031). |
DEBUG |
Toggle verbose logging (true/false). |
🚀 Running the server
Option 1 – Local Poetry workflow
poetry install
poetry run python main.py
This starts the server at http://localhost:9031/sse.
Option 2 – Docker Compose
cp .env.example .env # if you have not already
docker compose up --build -d
The compose stack exposes port 9031 on the host. Combine this with the chatbot by pointing OXII_MCP_SERVER_URL to http://host.docker.internal:9031/sse inside the chatbot container.
✅ Verifying the service
1. Use the bundled client
poetry run python client.py
Select a tool from the prompt and provide the required parameters to confirm end-to-end connectivity.
2. Visit the built-in docs UI
- Human friendly docs:
http://host.docker.internal:9031/docx - Machine readable catalogue:
http://host.docker.internal:9031/docs.json
3. Curl the SSE handshake
curl -N http://localhost:9031/sse
You should see an initial JSON payload describing the MCP capabilities.
🧰 Tool catalogue
Below is a quick reference for each registered MCP tool. All payloads are JSON structures passed through the MCP protocol.
| Tool | Purpose | Key parameters |
|---|---|---|
get_device_list |
List homes, rooms, devices, and remote buttons. | token |
switch_device_control |
Toggle SH1/SH2 relay devices. | token, house_id, device_id, button_code, command (ON/OFF) |
control_air_conditioner |
Full AC control (mode, temp, fan). | token, serial_number, mode, fan_speed, temperature, etc. |
create_device_cronjob |
Add/update/remove cronjobs for switches or AC. | token, device_id or button_id, action, cron_expression, command |
one_touch_control_all_devices |
Execute a house-wide preset (e.g., “turn everything off”). | token, house_id, status |
one_touch_control_by_type |
Toggle devices by type (LIGHT, CONDITIONER, …). | token, house_id, device_type, status |
room_one_touch_control |
Run a single-room preset. | token, room_id, status |
ℹ️ Detailed schemas live in
tools/next to each function. Review those modules for argument validation and API payload shapes.
🔄 Working with the chatbot
- Start the MCP server (local or Docker) and ensure port
9031is reachable from the chatbot environment. - In
chatbot/.env, setOXII_MCP_SERVER_URL=http://host.docker.internal:9031/ssewhen running the chatbot in Docker. - Restart the chatbot container (
docker compose restart app) to apply env changes. - Use the chatbot endpoint
POST /ai/agent-oxiiwith a valid OXII token—the agent will automatically call the MCP tools.
🧪 Testing & diagnostics
- Unit checks – Run
poetry run pytestif you add tests (seed filetest_tools.pyis available as a template). - Token validation – Use
chatbot/test_folders/testing_api.pyto fetch a fresh token before invoking tools. - Logs – With
DEBUG=true, the server prints detailed traces for each MCP call. In Docker, view them withdocker compose logs -f oxii-server.
🛠 Troubleshooting
| Symptom | Suggested fix |
|---|---|
httpx.ConnectError: All connection attempts failed |
The consumer is pointing to localhost from inside Docker. Use host.docker.internal or run both services on the same Compose network. |
| Authentication failures | Double-check OXII_PHONE, OXII_PASSWORD, and OXII_COUNTRY. Tokens expire—fetch a new one if requests start returning 401. |
| Cronjob payload rejected | Ensure the cron expression has 6 fields (second minute hour day month weekday) and matches the device type (SH1/SH2 vs SH4). |
| AC commands ignored | Some devices require numeric mode/fan values. See constants in tools/ac_control.py for valid ranges. |
| Docker rebuilds are slow | Use docker compose build oxii-server --no-cache after dependency changes, otherwise rely on cached layers. |
📚 Further reading
- Model Context Protocol (MCP) specification
- LangChain MCP Adapters
chatbot/README.mdfor the FastAPI-side integration guide.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。