PageIndex MCP
Enables LLMs to chat with long PDFs using a reasoning-based, tree-structured document index that navigates content like a human would, without requiring vector databases or hitting context limits.
README
<div align="center"> <a href="https://pageindex.ai/mcp"> <img src="https://docs.pageindex.ai/images/general/mcp_banner.jpg"> </a> </div>
PageIndex MCP
If you find this repo useful, please also star our main PageIndex repo ⭐
📘 PageIndex is a vectorless, reasoning-based RAG system that represents documents as hierarchical tree structures. It enables LLMs to navigate and retrieve information through structure and reasoning, not vector similarity — much like a human would retrieve information using a book's index.
🔌 PageIndex MCP exposes this LLM-native, in-context tree index directly to LLMs via MCP, allowing platforms like Claude, Cursor, and other MCP-compatible agents or LLMs to reason over document structure and retrieve the right information — without vector databases.
Want to chat with long PDFs but hit context limit reached errors? Add your file to PageIndex to seamlessly chat with long PDFs on any agent/LLM platforms.
✨ Chat to long PDFs the human-like, reasoning-based way ✨
- Support local and online PDFs
- Free 1000 pages
- Unlimited conversations
For more information, visit the PageIndex MCP page.
💡 Looking for a fully hosted experience? Try PageIndex Chat 🤖: a human-like document analyst that lets you chat with long PDFs using the same agentic, reasoning-based workflow as PageIndex MCP.
<p align="center"> <a href="https://pageindex.ai/mcp"> <img src="https://github.com/user-attachments/assets/d807d506-131d-4c7b-837c-96ab1adb2271"> </a> </p>
What is PageIndex?
<div align="center"> <a href="https://pageindex.ai/mcp"> <img src="https://docs.pageindex.ai/images/cookbook/vectorless-rag.png" width="70%"> </a> </div>
PageIndex is a vectorless, reasoning-based RAG system that generates hierarchical tree structures of documents and uses multi-step reasoning and tree search to retrieve information like a human expert would. It has the following key properties:
- Higher Accuracy: Relevance beyond similarity
- Better Transparency: Clear reasoning trajectory with traceable search paths
- Like A Human: Retrieve information like a human expert navigates documents
- No Vector DB: No extra infrastructure overhead
- No Chunking: Preserve full document context and structure
- No Top-K: Retrieve all relevant passages automatically
PageIndex MCP Setup
See PageIndex MCP for full video guidances.
1. For Claude Desktop (Recommended)
One-Click Installation with Desktop Extension (MCPB):
- Download the latest
.mcpbfile from Releases - Double-click the
.mcpbfile to install automatically in Claude Desktop - The OAuth authentication will be handled automatically when you first use the extension
Note: Claude Desktop Extensions now use the
.mcpb(MCP Bundle) file extension. Existing.dxtextensions will continue to work, but we recommend using.mcpbfor new installations.
This is the easiest way to get started with PageIndex's reasoning-based RAG capabilities.
2. For Other MCP-Compatible Clients
Option 1: Local MCP Server (with local PDF upload)
Requirements: Node.js ≥18.0.0
Add to your MCP configuration:
{
"mcpServers": {
"pageindex": {
"command": "npx",
"args": ["-y", "pageindex-mcp"]
}
}
}
Note: This local server provides full PDF upload capabilities and handles all authentication automatically.
Option 2: Direct Connection to PageIndex
Connect directly to the PageIndex OAuth-enabled MCP server:
{
"mcpServers": {
"pageindex": {
"type": "http",
"url": "https://chat.pageindex.ai/mcp"
}
}
}
For clients that don't support HTTP MCP servers:
If your MCP client doesn't support HTTP servers directly, you can use mcp-remote as a bridge:
{
"mcpServers": {
"pageindex": {
"command": "npx",
"args": ["-y", "mcp-remote", "https://chat.pageindex.ai/mcp"]
}
}
}
Note: Option 1 provides local PDF upload capabilities, while Option 2 only supports PDF processing via URLs (no local file uploads).
Related Links
License
This project is licensed under the terms of the MIT open source license. Please refer to MIT for the full terms.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。