paperless-mcp
paperless-mcp
README
Paperless-NGX MCP Server
An MCP (Model Context Protocol) server for interacting with a Paperless-NGX API server. This server provides tools for managing documents, tags, correspondents, and document types in your Paperless-NGX instance.
Quick Start
Installing via Smithery
To install Paperless NGX MCP Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @baruchiro/paperless-mcp --client claude
Manual Installation
Add these to your MCP config file:
// STDIO mode (recommended for local or CLI use)
"paperless": {
"command": "npx",
"args": [
"-y",
"@baruchiro/paperless-mcp@latest",
],
"env": {
"PAPERLESS_URL": "http://your-paperless-instance:8000",
"PAPERLESS_API_KEY": "your-api-token"
}
}
// HTTP mode (recommended for Docker or remote use)
"paperless": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"ghcr.io/baruchiro/paperless-mcp:latest",
],
"env": {
"PAPERLESS_URL": "http://your-paperless-instance:8000",
"PAPERLESS_API_KEY": "your-api-token"
}
}
-
Get your API token:
- Log into your Paperless-NGX instance
- Click your username in the top right
- Select "My Profile"
- Click the circular arrow button to generate a new token
-
Replace the placeholders in your MCP config:
http://your-paperless-instance:8000with your Paperless-NGX URLyour-api-tokenwith the token you just generated
That's it! Now you can ask Claude to help you manage your Paperless-NGX documents.
Example Usage
Here are some things you can ask Claude to do:
- "Show me all documents tagged as 'Invoice'"
- "Search for documents containing 'tax return'"
- "Create a new tag called 'Receipts' with color #FF0000"
- "Download document #123"
- "List all correspondents"
- "Create a new document type called 'Bank Statement'"
Available Tools
Document Operations
list_documents
Get a paginated list of all documents.
Parameters:
- page (optional): Page number
- page_size (optional): Number of documents per page
list_documents({
page: 1,
page_size: 25
})
get_document
Get a specific document by ID.
Parameters:
- id: Document ID
get_document({
id: 123
})
search_documents
Full-text search across documents.
Parameters:
- query: Search query string
search_documents({
query: "invoice 2024"
})
download_document
Download a document file by ID.
Parameters:
- id: Document ID
- original (optional): If true, downloads original file instead of archived version
download_document({
id: 123,
original: false
})
bulk_edit_documents
Perform bulk operations on multiple documents.
Parameters:
- documents: Array of document IDs
- method: One of:
- set_correspondent: Set correspondent for documents
- set_document_type: Set document type for documents
- set_storage_path: Set storage path for documents
- add_tag: Add a tag to documents
- remove_tag: Remove a tag from documents
- modify_tags: Add and/or remove multiple tags
- delete: Delete documents
- reprocess: Reprocess documents
- set_permissions: Set document permissions
- merge: Merge multiple documents
- split: Split a document into multiple documents
- rotate: Rotate document pages
- delete_pages: Delete specific pages from a document
- Additional parameters based on method:
- correspondent: ID for set_correspondent
- document_type: ID for set_document_type
- storage_path: ID for set_storage_path
- tag: ID for add_tag/remove_tag
- add_tags: Array of tag IDs for modify_tags
- remove_tags: Array of tag IDs for modify_tags
- permissions: Object for set_permissions with owner, permissions, merge flag
- metadata_document_id: ID for merge to specify metadata source
- delete_originals: Boolean for merge/split
- pages: String for split "[1,2-3,4,5-7]" or delete_pages "[2,3,4]"
- degrees: Number for rotate (90, 180, or 270)
Examples:
// Add a tag to multiple documents
bulk_edit_documents({
documents: [1, 2, 3],
method: "add_tag",
tag: 5
})
// Set correspondent and document type
bulk_edit_documents({
documents: [4, 5],
method: "set_correspondent",
correspondent: 2
})
// Merge documents
bulk_edit_documents({
documents: [6, 7, 8],
method: "merge",
metadata_document_id: 6,
delete_originals: true
})
// Split document into parts
bulk_edit_documents({
documents: [9],
method: "split",
pages: "[1-2,3-4,5]"
})
// Modify multiple tags at once
bulk_edit_documents({
documents: [10, 11],
method: "modify_tags",
add_tags: [1, 2],
remove_tags: [3, 4]
})
post_document
Upload a new document to Paperless-NGX.
Parameters:
- file: Base64 encoded file content
- filename: Name of the file
- title (optional): Title for the document
- created (optional): DateTime when the document was created (e.g. "2024-01-19" or "2024-01-19 06:15:00+02:00")
- correspondent (optional): ID of a correspondent
- document_type (optional): ID of a document type
- storage_path (optional): ID of a storage path
- tags (optional): Array of tag IDs
- archive_serial_number (optional): Archive serial number
- custom_fields (optional): Array of custom field IDs
post_document({
file: "base64_encoded_content",
filename: "invoice.pdf",
title: "January Invoice",
created: "2024-01-19",
correspondent: 1,
document_type: 2,
tags: [1, 3],
archive_serial_number: "2024-001"
})
Tag Operations
list_tags
Get all tags.
list_tags()
create_tag
Create a new tag.
Parameters:
- name: Tag name
- color (optional): Hex color code (e.g. "#ff0000")
- match (optional): Text pattern to match
- matching_algorithm (optional): One of "any", "all", "exact", "regular expression", "fuzzy"
create_tag({
name: "Invoice",
color: "#ff0000",
match: "invoice",
matching_algorithm: "fuzzy"
})
Correspondent Operations
list_correspondents
Get all correspondents.
list_correspondents()
create_correspondent
Create a new correspondent.
Parameters:
- name: Correspondent name
- match (optional): Text pattern to match
- matching_algorithm (optional): One of "any", "all", "exact", "regular expression", "fuzzy"
create_correspondent({
name: "ACME Corp",
match: "ACME",
matching_algorithm: "fuzzy"
})
Document Type Operations
list_document_types
Get all document types.
list_document_types()
create_document_type
Create a new document type.
Parameters:
- name: Document type name
- match (optional): Text pattern to match
- matching_algorithm (optional): One of "any", "all", "exact", "regular expression", "fuzzy"
create_document_type({
name: "Invoice",
match: "invoice total amount due",
matching_algorithm: "any"
})
Error Handling
The server will show clear error messages if:
- The Paperless-NGX URL or API token is incorrect
- The Paperless-NGX server is unreachable
- The requested operation fails
- The provided parameters are invalid
Development
Want to contribute or modify the server? Here's what you need to know:
- Clone the repository
- Install dependencies:
npm install
- Make your changes to server.js
- Test locally:
node server.js http://localhost:8000 your-test-token
The server is built with:
API Documentation
This MCP server implements endpoints from the Paperless-NGX REST API. For more details about the underlying API, see the official documentation.
Running the MCP Server
The MCP server can be run in two modes:
1. stdio (default)
This is the default mode. The server communicates over stdio, suitable for CLI and direct integrations.
npm run start -- <baseUrl> <token>
2. HTTP (Streamable HTTP Transport)
To run the server as an HTTP service, use the --http flag. You can also specify the port with --port (default: 3000). This mode requires Express to be installed (it is included as a dependency).
npm run start -- <baseUrl> <token> --http --port 3000
- The MCP API will be available at
POST /mcpon the specified port. - Each request is handled statelessly, following the StreamableHTTPServerTransport pattern.
- GET and DELETE requests to
/mcpwill return 405 Method Not Allowed.
Credits
This project is a fork of nloui/paperless-mcp. Many thanks to the original author for their work. Contributions and improvements may be returned upstream.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。