PaperMCP
An academic paper retrieval server that enables AI assistants to search and filter millions of scholarly works from the OpenAlex database by keywords, country, and publication year. It provides comprehensive metadata including abstracts, citation data, and institutional affiliations to streamline academic research and literature reviews.
README
PaperMCP 智能学术论文检索系统
欢迎使用 PaperMCP 智能学术论文检索系统!这是一个基于 Model Context Protocol (MCP) 的高级学术论文搜索服务器,专为研究员和教授设计。通过 OpenAlex API 和智能算法,为AI助手提供精准的学术文献检索能力,大幅提升科研效率。
🌟 Features
📚 Comprehensive Paper Search
Search academic papers with flexible filtering options:
- Keyword Search - Find papers by title, abstract, or full-text content
- Country Filter - Limit results to papers from specific countries (CN, US, GB, etc.)
- Year Filter - Search papers from specific publication years
- Result Limit - Control the number of results (up to 50 papers)
- Sort Options - Sort by citation count, publication date, or relevance
- Open Access Filter - Find only freely accessible papers
📊 Rich Paper Information
Get comprehensive details for each paper:
- Basic Info - Title, authors, publication year, document type
- Abstract - Full abstract text with intelligent reconstruction from inverted index
- Publication Details - Journal/venue, DOI, URLs
- Citation Data - Citation count and related works
- Institutional Info - Author affiliations and institutions
- Subject Classification - Topics, subfields, fields, and domains
- Open Access Status - OA status and APC (Article Processing Charge) information
🔍 Advanced Filtering
- Institution-based Filtering - Find papers from specific countries' institutions
- Temporal Filtering - Search within specific publication years
- Access-based Filtering - Filter by open access availability
- Quality Indicators - Sort by citation impact or publication date
🤖 MCP Integration
Seamless integration with MCP-compatible clients (like Claude) for intelligent academic research
🚦 Requirements
Before getting started, please ensure you have:
-
Node.js and npm:
- Requires Node.js version >= 18
- Download and install from nodejs.org
-
Email Address:
- Provide a valid email address for OpenAlex API access
- OpenAlex requires an email for rate limiting and contact purposes
- No API key needed - OpenAlex is free to use!
🛠️ Installation & Setup
Install via Smithery (Recommended)
If you're using Claude Desktop, you can quickly install via Smithery:
npx -y @smithery/cli install @guangxiangdebizi/paper-mcp --client claude
Manual Installation
-
Get the code:
git clone https://github.com/guangxiangdebizi/PaperMCP.git cd PaperMCP -
Install dependencies:
npm install -
Configure Email Address:
- Create a
.envfile in the project root directory - Add the following content:
OPENALEX_EMAIL=your_email@example.com - Or set it directly in the
src/config.tsfile
- Create a
-
Build the project:
npm run build
🚀 Running the Server
There are two ways to start the server:
Method 1: Using stdio mode (Direct run)
node build/index.js
Method 2: Using Supergateway (Recommended for development)
npx supergateway --stdio "node build/index.js" --port 3100
📝 Configuring MCP Clients
To use this server in Claude or other MCP clients, you need the following configuration:
Claude Configuration
Add the following to Claude's configuration file:
{
"mcpServers": {
"paper-search-server": {
"url": "http://localhost:3100/sse", // If using Supergateway
"type": "sse",
"disabled": false,
"autoApprove": [
"paper_search"
]
}
}
}
If using stdio mode directly (without Supergateway), configure as follows:
{
"mcpServers": {
"paper-search-server": {
"command": "C:/path/to/PaperMCP/build/index.js", // Modify to actual path
"type": "stdio",
"disabled": false,
"autoApprove": [
"paper_search"
]
}
}
}
💡 Usage Examples
Here are some example queries using the PaperMCP server:
1. Basic Paper Search
You can ask Claude:
General Search:
"Search for papers about machine learning published in 2024"
Country-specific Search:
"Find papers about artificial intelligence from Chinese institutions in 2023"
Author/Institution Focus:
"Search for papers about LLM from US universities in the last 2 years"
2. Advanced Filtering
Citation-based Search:
"Find the most-cited papers about deep learning from 2022, limited to 20 results"
Open Access Papers:
"Search for open access papers about natural language processing from 2024"
Specific Year Range:
"Find papers about computer vision published in 2023, sorted by citation count"
3. Research-focused Queries
Literature Review:
"Help me find recent papers about transformer architectures for my literature review"
Trend Analysis:
"Search for papers about quantum computing from different countries to analyze research trends"
Interdisciplinary Research:
"Find papers that combine AI and biology, focusing on recent publications"
4. Complex Research Queries
Comparative Analysis:
"Compare recent AI research output between China and the US by finding papers from both countries in 2024"
Field Evolution:
"Show me how research in reinforcement learning has evolved by finding papers from 2020-2024"
Open Science Focus:
"Find highly-cited open access papers in machine learning to understand accessible research trends"
This will use the paper_search tool to retrieve comprehensive academic paper information.
📊 Supported Search Parameters
The PaperMCP server supports the following search parameters:
| Parameter | Type | Description | Example |
|---|---|---|---|
query |
string | Search keywords (required) | "machine learning", "deep learning" |
country_code |
string | Filter by country code | "CN" (China), "US" (USA), "GB" (UK) |
year |
number | Filter by publication year | 2024, 2023 |
num_results |
number | Number of results (max 50) | 10, 20, 50 |
sort_by |
string | Sort method | "cited_by_count", "publication_date", "relevance_score" |
open_access |
boolean | Filter open access papers | true, false |
📈 Data Sources
This server uses the OpenAlex API, which provides:
- 260M+ papers from across all disciplines
- Real-time updates with new publications
- Comprehensive metadata including citations, authors, institutions
- Open access information and APC data
- Subject classification at multiple levels
- Institution and country data for geographic analysis
🔮 Future Plans
Future enhancements may include:
- Author Search - Find papers by specific authors
- Institution Search - Search within specific institutions
- Journal/Venue Filtering - Filter by publication venue
- Citation Network Analysis - Explore citation relationships
- Concept-based Search - Search by research concepts and topics
- Export Functionality - Export results in various formats (BibTeX, etc.)
📄 License
This project is licensed under the MIT License. See the LICENSE file for details.
👨💻 Author
- Name: Xingyu_Chen
- Email: guangxiangdebizi@gmail.com
- GitHub: guangxiangdebizi
🙏 Acknowledgments
This project uses the OpenAlex API, a free and open catalog of scholarly papers, authors, institutions, and more. Special thanks to the OpenAlex team for providing this invaluable resource to the research community.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。