Paprika MCP Server
Enables AI assistants to search, read, and update recipes in Paprika Recipe Manager, allowing natural language interaction with your recipe collection including ingredients, directions, and metadata.
README
Paprika MCP Server
A Model Context Protocol (MCP) server for the Paprika Recipe Manager, allowing AI assistants to search, read, and update recipes.
Features
- Search Recipes: Search across recipe titles, ingredients, categories, directions, and notes with context
- Read Recipes: Get full recipe data including all metadata, ingredients, and directions
- Update Recipes: Safely update recipe fields using find/replace (requires user confirmation)
Prerequisites
- Python 3.10 or higher (Python 3.13 recommended)
- A Paprika account with recipes
- Node.js (for pre-commit hooks, optional)
Quick Start
Run the setup script to install everything and configure credentials:
cd paprika-mcp
./setup.sh
This will:
- Install paprika-mcp with dependencies
- Set up pre-commit hooks (if npm available)
Manual Installation
If you prefer manual setup:
1. Install paprika-recipes
cd ../paprika-recipes
python3 -m venv .venv
source .venv/bin/activate
pip install -e .
deactivate
2. Install paprika-mcp
cd ../paprika-mcp
python3 -m venv .venv
source .venv/bin/activate
pip install -e ".[dev]"
3. Configure credentials
Option 1: Interactive setup
source .venv/bin/activate
paprika-mcp setup
Option 2: Manual config file
Create ~/.paprika-mcp/config.json:
{
"email": "your@email.com",
"password": "yourpassword"
}
Set permissions:
chmod 600 ~/.paprika-mcp/config.json
Option 3: Environment variables
export PAPRIKA_EMAIL="your@email.com"
export PAPRIKA_PASSWORD="yourpassword"
Credential Management
The server uses a credential flow designed for MCP stdio transport:
Priority order:
PAPRIKA_EMAILandPAPRIKA_PASSWORDenvironment variables~/.paprika-mcp/config.jsonfile
Note: This server manages credentials independently from the paprika-recipes CLI tool's keyring storage. This simplifies the credential flow for MCP stdio transport where the process is spawned by the AI app.
User-Agent
If you have Paprika for Mac installed, the fork of the paprika-recipes Python package should automatically create a suitable User-Agent string. Otherwise, you might have to set the PAPRIKA_USER_AGENT environment variable or the "user_agent" property in config.json.
Usage
As an MCP Server
Add to your MCP client configuration (e.g., Claude Desktop's ~/Library/Application Support/Claude/claude_desktop_config.json):
{
"mcpServers": {
"paprika": {
"command": "/Users/yourusername/Developer/paprika-mcp/.venv/bin/paprika-mcp"
}
}
}
Or use environment variables:
{
"mcpServers": {
"paprika": {
"command": "/Users/yourusername/Developer/paprika-mcp/.venv/bin/paprika-mcp",
"env": {
"PAPRIKA_EMAIL": "your@email.com",
"PAPRIKA_PASSWORD": "yourpassword"
}
}
}
}
Available Tools
format_fraction
Format a fraction string to unicode fraction characters. This tool is local-only and doesn't require Paprika server connectivity - useful for testing.
Parameters:
fraction(required): Fraction in the form "numerator/denominator" (e.g., "1/4", " 31 / 200 "), or already formatted unicode
Features:
- Handles already-formatted unicode fractions (returns them as-is)
- Strips whitespace from input
- Converts common fractions to dedicated unicode characters
- Composes complex fractions using superscript/subscript digits
Examples:
{
"fraction": "1/4"
}
Returns: ¼
{
"fraction": " 31 / 200 "
}
Returns: ³¹⁄₂₀₀ (whitespace stripped)
{
"fraction": "¼"
}
Returns: ¼ (already formatted, returned as-is)
Common fractions (1/4, 1/2, 3/4, 1/3, 2/3, etc.) use dedicated Unicode characters. Complex fractions are composed using superscript numerator + fraction slash (⁄) + subscript denominator.
search_recipes
Search for recipes by text across multiple fields.
Parameters:
query(required): Text to search forfields(optional): Array of fields to search in:["name", "ingredients", "categories", "directions", "notes"]context_lines(optional): Number of context lines around matches (default: 2)
Example:
{
"query": "chicken",
"fields": ["name", "ingredients"],
"context_lines": 2
}
read_recipe
Read full recipe data by ID or title.
Parameters:
idortitle(one required): Recipe UUID or exact recipe name
Note: Title matching uses Unicode normalization (NFD), so it works correctly with accented characters regardless of their unicode representation (e.g., "café" will match "café").
Example:
{
"id": "RECIPE-UUID-HERE"
}
or
{
"title": "Chocolate Chip Cookies"
}
User Preferences (Prompts)
You can provide context to the AI about how you want it to work with your recipes by creating a ~/.paprika-mcp/prompt.md file. This will be automatically loaded as a prompt when the MCP server starts.
Example prompt file:
# Recipe Management Preferences
- Always preserve source URLs and attribution
- Prefer metric measurements
- I'm cooking for 2 people typically
- I avoid peanuts (allergy)
- Categorize using: Breakfast, Lunch, Dinner, Desserts, Snacks
See prompt.example.md for a complete template.
update_recipe
Update a recipe field using find/replace.
⚠️ DANGEROUS: This tool modifies recipe data. User confirmation is recommended before execution.
Parameters:
id(required): Recipe UUIDfield(required): Field to update (name, ingredients, directions, notes, etc.)find(required): Text to findreplace(required): Text to replace withregex(optional): Treat find pattern as regex (default: false)
Example:
{
"id": "RECIPE-UUID-HERE",
"field": "ingredients",
"find": "1 cup sugar",
"replace": "3/4 cup sugar"
}
Code Changes and Rebuilding
The package is installed in editable mode (pip install -e .), so:
- ✓ No rebuild needed: Changes to
.pyfiles are immediately available - ⚠️ Restart required: MCP clients cache the stdio process - restart VS Code or your MCP client to pick up changes
- ↻ Reinstall needed: Only for
pyproject.tomlor entry point changes
Force reinstall if needed:
.venv/bin/pip install -e . --force-reinstall --no-deps
Pre-commit Hooks
Pre-commit hooks run automatically via Husky when you commit. They:
- Only run on staged Python files
- Run isort, black, and ruff
- Auto-fix issues and re-stage files
To install hooks manually:
npm install
Security Notes
- Credentials are stored in plain text in
~/.paprika-mcp/config.json - Environment variables (
PAPRIKA_EMAIL,PAPRIKA_PASSWORD) are also supported
License
MIT
Credits
Built on top of paprika-recipes originally by Adam Coddington.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。