par5-mcp
Enables parallel execution of shell commands and AI coding agents (Claude, Gemini, Codex) across lists of items like files or URLs, with batched processing and real-time streaming output for batch operations.
README
par5-mcp
An MCP (Model Context Protocol) server that enables parallel execution of shell commands and AI coding agents across lists of items. Perfect for batch processing files, running linters across multiple targets, or delegating complex tasks to multiple AI agents simultaneously.
Features
- List Management: Create, update, delete, and inspect lists of items (file paths, URLs, identifiers, etc.)
- Parallel Shell Execution: Run shell commands across all items in a list with batched parallelism
- Multi-Agent Orchestration: Spawn Claude, Gemini, or Codex agents in parallel to process items
- Streaming Output: Results stream to files in real-time for monitoring progress
- Batched Processing: Commands and agents run in batches of 10 to avoid overwhelming the system
Installation
npm install par5-mcp
Or install globally:
npm install -g par5-mcp
Usage
As an MCP Server
Add to your MCP client configuration:
{
"mcpServers": {
"par5": {
"command": "npx",
"args": ["par5-mcp"]
}
}
}
Or if installed globally:
{
"mcpServers": {
"par5": {
"command": "par5-mcp"
}
}
}
Available Tools
List Management
create_list
Creates a named list of items for parallel processing.
Parameters:
items(string[]): Array of items to store in the list
Returns: A unique list ID to use with other tools
Example:
create_list(items: ["src/a.ts", "src/b.ts", "src/c.ts"])
// Returns: list_id = "abc-123-..."
get_list
Retrieves the items in an existing list by its ID.
Parameters:
list_id(string): The list ID returned bycreate_list
update_list
Updates an existing list by replacing its items with a new array.
Parameters:
list_id(string): The list ID to updateitems(string[]): The new array of items
delete_list
Deletes an existing list by its ID.
Parameters:
list_id(string): The list ID to delete
list_all_lists
Lists all existing lists and their item counts.
Parameters: None
Parallel Execution
run_shell_across_list
Executes a shell command for each item in a list. Commands run in batches of 10 parallel processes.
Parameters:
list_id(string): The list ID to iterate overcommand(string): Shell command with$itemplaceholder
Variable Substitution:
- Use
$itemin your command - it will be replaced with each list item (properly shell-escaped)
Example:
run_shell_across_list(
list_id: "abc-123",
command: "wc -l $item"
)
This runs wc -l 'src/a.ts', wc -l 'src/b.ts', etc. in parallel.
Output:
- stdout and stderr are streamed to separate files per item
- File paths are returned for you to read the results
run_agent_across_list
Spawns an AI coding agent for each item in a list. Agents run in batches of 10 with a 5-minute timeout per agent.
Parameters:
list_id(string): The list ID to iterate overagent(enum):"claude","gemini", or"codex"prompt(string): Prompt with{{item}}placeholder
Available Agents:
| Agent | CLI | Auto-Accept Flag |
|---|---|---|
claude |
Claude Code CLI | --dangerously-skip-permissions |
gemini |
Google Gemini CLI | --yolo |
codex |
OpenAI Codex CLI | --dangerously-bypass-approvals-and-sandbox |
Variable Substitution:
- Use
{{item}}in your prompt - it will be replaced with each list item
Example:
run_agent_across_list(
list_id: "abc-123",
agent: "claude",
prompt: "Review {{item}} for security vulnerabilities and suggest fixes"
)
Output:
- stdout and stderr are streamed to separate files per item
- File paths are returned for you to read the agent outputs
Workflow Example
Here's a typical workflow for processing multiple files:
-
Create a list of files to process:
create_list(items: ["src/auth.ts", "src/api.ts", "src/utils.ts"]) -
Run a shell command across all files:
run_shell_across_list( list_id: "<returned-id>", command: "cat $item | grep -n 'TODO'" ) -
Or delegate to AI agents:
run_agent_across_list( list_id: "<returned-id>", agent: "claude", prompt: "Add comprehensive JSDoc comments to all exported functions in {{item}}" ) -
Read the output files to check results
-
Clean up:
delete_list(list_id: "<returned-id>")
Configuration
The following environment variables can be used to configure par5-mcp:
| Variable | Description | Default |
|---|---|---|
PAR5_BATCH_SIZE |
Number of parallel processes per batch | 10 |
PAR5_AGENT_ARGS |
Additional arguments passed to all agents | (none) |
PAR5_CLAUDE_ARGS |
Additional arguments passed to Claude CLI | (none) |
PAR5_GEMINI_ARGS |
Additional arguments passed to Gemini CLI | (none) |
PAR5_CODEX_ARGS |
Additional arguments passed to Codex CLI | (none) |
PAR5_DISABLE_CLAUDE |
Set to any value to disable the Claude agent | (none) |
PAR5_DISABLE_GEMINI |
Set to any value to disable the Gemini agent | (none) |
PAR5_DISABLE_CODEX |
Set to any value to disable the Codex agent | (none) |
Example:
{
"mcpServers": {
"par5": {
"command": "npx",
"args": ["par5-mcp"],
"env": {
"PAR5_BATCH_SIZE": "20",
"PAR5_CLAUDE_ARGS": "--model claude-sonnet-4-20250514"
}
}
}
}
Output Files
Results are written to temporary files in the system temp directory under par5-mcp-results/:
/tmp/par5-mcp-results/<run-id>/
├── auth.ts.stdout.txt
├── auth.ts.stderr.txt
├── api.ts.stdout.txt
├── api.ts.stderr.txt
└── ...
File names are derived from the item value (sanitized for filesystem safety).
Development
Building from Source
git clone <repository-url>
cd par5-mcp
npm install
npm run build
Running Locally
npm start
Requirements
- Node.js 18+
- For
run_agent_across_list:claudeagent requires Claude Code CLI installedgeminiagent requires Gemini CLI installedcodexagent requires Codex CLI installed
License
ISC
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。