Pendle Finance MCP Server

Pendle Finance MCP Server

Enables interaction with Pendle Finance DeFi protocol to fetch live yields, simulate staking and swaps, retrieve portfolio data, and get AI-based token recommendations. Provides comprehensive DeFi portfolio management and yield optimization through natural language.

Category
访问服务器

README

Pendle Finance FastMCP Server 🚀

Python FastAPI

This repository contains a Model Context Protocol (MCP) Server built with FastMCP in Python.
It connects to Pendle Finance DeFi Protocol and exposes endpoints for AI agents or clients like MCP Inspector.

Features include:

  • Fetching live yields from Pendle API
  • Simulating staking and swaps
  • Retrieving user DeFi portfolio
  • AI-based token recommendations (simulated)
  • AI future yield predictions (simulated)

⚙ Setup and Installation

  1. Prerequisites

Python 3.10+ installed on your system

Node.js 16+ if you want to use MCP Inspector

  1. Clone This Repo

git clone https://github.com/maneesa029/Pendle_mcp cd Pendle_mcp

  1. Create and Activate a Virtual Environment

Create virtual environment

python -m venv venv

Windows

.\venv\Scripts\activate

macOS/Linux

source venv/bin/activate

  1. Install Dependencies

pip install -r requirements.txt

  1. Configure .env

Create a .env file in the root folder and add your configuration:

FastAPI settings

FASTAPI_ENV=development HOST=127.0.0.1 PORT=8000

Pendle API (no secret key needed for public endpoints)

PENDLE_API_URL=https://api.pendle.finance/v1/yields

Ethereum testnet (if using staking simulation or swaps)

RPC_URL=https://sepolia.infura.io/v3/YOUR_INFURA_KEY PRIVATE_KEY=0xYOUR_TEST_PRIVATE_KEY

⚠ Security Warning: Do NOT use your main wallet private key with real funds. Always use a testnet key or a small segregated account for testing.


🔬 Running and Monitoring the Server

  1. Start the Pendle MCP Server

uvicorn server:app --reload --port 8000

You should see:

INFO: Uvicorn running on http://127.0.0.1:8000 INFO: Application startup complete.

  1. Open MCP Inspector (Optional)

If you want to test tools interactively:

npx @modelcontextprotocol/inspector

This will launch a local URL (e.g., http://127.0.0.1:6274)

Open the URL in your browser

In Tools tab, you’ll see all exposed Pendle MCP functions:

get_yield → fetch top yields

stake → simulate staking

swap → simulate swap

portfolio → user portfolio

predict_best_token → AI-recommended token

predict_future → future yield prediction


✅ 3. Test via Python Client

test_client.py

import requests

BASE = "http://127.0.0.1:8000"

print(requests.get(f"{BASE}/get_yield").json()) print(requests.post(f"{BASE}/stake", json={"user_address":"0x123","token":"PENDLE","amount":10}).json()) print(requests.get(f"{BASE}/predict_best_token").json())


🔹 Features

Fetch live Pendle yields from API

Simulate staking and swaps

Retrieve user DeFi portfolio

AI predicts best token to stake

AI predicts future yields for N days

Works seamlessly with MCP Inspector or any AI agent


🔹 Optional AI Improvements

Replace random predictions with historical yield ML model (scikit-learn / Prophet)

Include portfolio optimization for multiple tokens

Connect Ethereum testnet to simulate real transactions

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选