Pendle Finance MCP Server
Enables interaction with Pendle Finance DeFi protocol to fetch live yields, simulate staking and swaps, retrieve portfolio data, and get AI-based token recommendations. Provides comprehensive DeFi portfolio management and yield optimization through natural language.
README
Pendle Finance FastMCP Server 🚀
This repository contains a Model Context Protocol (MCP) Server built with FastMCP in Python.
It connects to Pendle Finance DeFi Protocol and exposes endpoints for AI agents or clients like MCP Inspector.
Features include:
- Fetching live yields from Pendle API
- Simulating staking and swaps
- Retrieving user DeFi portfolio
- AI-based token recommendations (simulated)
- AI future yield predictions (simulated)
⚙ Setup and Installation
- Prerequisites
Python 3.10+ installed on your system
Node.js 16+ if you want to use MCP Inspector
- Clone This Repo
git clone https://github.com/maneesa029/Pendle_mcp cd Pendle_mcp
- Create and Activate a Virtual Environment
Create virtual environment
python -m venv venv
Windows
.\venv\Scripts\activate
macOS/Linux
source venv/bin/activate
- Install Dependencies
pip install -r requirements.txt
- Configure .env
Create a .env file in the root folder and add your configuration:
FastAPI settings
FASTAPI_ENV=development HOST=127.0.0.1 PORT=8000
Pendle API (no secret key needed for public endpoints)
PENDLE_API_URL=https://api.pendle.finance/v1/yields
Ethereum testnet (if using staking simulation or swaps)
RPC_URL=https://sepolia.infura.io/v3/YOUR_INFURA_KEY PRIVATE_KEY=0xYOUR_TEST_PRIVATE_KEY
⚠ Security Warning: Do NOT use your main wallet private key with real funds. Always use a testnet key or a small segregated account for testing.
🔬 Running and Monitoring the Server
- Start the Pendle MCP Server
uvicorn server:app --reload --port 8000
You should see:
INFO: Uvicorn running on http://127.0.0.1:8000 INFO: Application startup complete.
- Open MCP Inspector (Optional)
If you want to test tools interactively:
npx @modelcontextprotocol/inspector
This will launch a local URL (e.g., http://127.0.0.1:6274)
Open the URL in your browser
In Tools tab, you’ll see all exposed Pendle MCP functions:
get_yield → fetch top yields
stake → simulate staking
swap → simulate swap
portfolio → user portfolio
predict_best_token → AI-recommended token
predict_future → future yield prediction
✅ 3. Test via Python Client
test_client.py
import requests
BASE = "http://127.0.0.1:8000"
print(requests.get(f"{BASE}/get_yield").json()) print(requests.post(f"{BASE}/stake", json={"user_address":"0x123","token":"PENDLE","amount":10}).json()) print(requests.get(f"{BASE}/predict_best_token").json())
🔹 Features
Fetch live Pendle yields from API
Simulate staking and swaps
Retrieve user DeFi portfolio
AI predicts best token to stake
AI predicts future yields for N days
Works seamlessly with MCP Inspector or any AI agent
🔹 Optional AI Improvements
Replace random predictions with historical yield ML model (scikit-learn / Prophet)
Include portfolio optimization for multiple tokens
Connect Ethereum testnet to simulate real transactions
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。