
PentestThinkingMCP
An AI-powered penetration testing reasoning engine that provides automated attack path planning, step-by-step guidance for CTFs/HTB challenges, and tool recommendations using Beam Search and MCTS algorithms.
README
PentestThinkingMCP
A systematic, AI-powered penetration testing reasoning engine (MCP server) for attack path planning, CTF/HTB solving, and automated pentest workflows. Features Beam Search, MCTS, attack step scoring, and tool recommendations.
What is PentestThinkingMCP?
PentestThinkingMCP is an advanced Model Context Protocol (MCP) server designed to empower both human and AI pentesters. It provides:
- Automated attack path planning using Beam Search and Monte Carlo Tree Search (MCTS)
- Step-by-step reasoning for CTFs, Hack The Box (HTB), and real-world pentests
- Attack step scoring and prioritization
- Tool recommendations for each step (e.g., nmap, metasploit, linpeas)
- Critical path highlighting for the most promising exploit chains
- Tree-based reasoning for reporting and documentation
Why is it special?
- Brings LLMs to the next level: Transforms a normal LLM into a structured, methodical pentest planner and advisor
- Automates complex reasoning: Finds multi-stage attack chains, not just single exploits
- Works for CTFs, HTB, and real-world pentests: Adapts to any scenario where stepwise attack logic is needed
- Bridges the gap between AI and hacking: Makes AI a true partner in offensive security
Features
- Dual search strategies for attack modeling:
- Beam search with configurable width (for methodical exploit chain discovery)
- MCTS for complex decision spaces (for dynamic attack scenarios with unknowns)
- Evidence/Vulnerability scoring and evaluation
- Tree-based attack path analysis
- Statistical analysis of potential attack vectors
- MCP protocol compliance
How does it work?
- Input:
You (or your AI) provide the current attack step/state (e.g., "Enumerate SMB on 10.10.10.10"). - Reasoning:
The server uses Beam Search or MCTS to explore possible next steps, scoring and prioritizing them. - Output:
Returns the next best attack step, the full attack chain, recommended tool, and highlights the critical path.
Example Workflow: Solving an HTB Machine
- Recon:
Input:attackStep: "Start with initial recon on 10.10.10.10"
Output:Run nmap -p- 10.10.10.10
(recommended tool: nmap) - Enumeration:
Input:attackStep: "Run nmap -p- 10.10.10.10"
Output:Enumerate SMB on port 445
(recommended tool: enum4linux) - Vulnerability Analysis:
Input:attackStep: "Enumerate SMB on port 445"
Output:Search for public SMB exploits (CVE-2017-0144)
(recommended tool: searchsploit) - Exploitation:
Input:attackStep: "Search for public SMB exploits (CVE-2017-0144)"
Output:Exploit SMB with EternalBlue (CVE-2017-0144)
(recommended tool: metasploit) - Privilege Escalation:
Input:attackStep: "Got shell as user"
Output:Run winPEAS for privilege escalation checks
(recommended tool: winPEAS) - Root/Flag:
Input:attackStep: "Found user.txt, need root"
Output:Check for AlwaysInstallElevated misconfiguration
(recommended tool: manual investigation)
Installation
git clone https://github.com/ibrahimsaleem/PentestThinkingMCP.git
cd PentestThinkingMCP
npm install
npm run build
Usage
- Add to your MCP client (Cursor, Claude Desktop, etc.) as a server:
{ "mcpServers": { "pentestthinkingMCP": { "command": "node", "args": ["path/to/pentestthinkingMCP/dist/index.js"] } } }
- Interact with it by sending attack steps and receiving next-step recommendations, tool suggestions, and attack path trees.
Search Strategies for Pentesting
Beam Search
- Maintains a fixed-width set of the most promising attack paths or vulnerability chains.
- Optimal for step-by-step exploit development and known vulnerability pattern matching.
- Best for: Enumerating attack vectors, methodical vulnerability chaining, logical exploit pathfinding.
Monte Carlo Tree Search (MCTS)
- Simulation-based exploration of the potential attack surface.
- Balances exploration of novel attack vectors and exploitation of known weaknesses.
- Best for: Complex network penetration tests, scenarios with uncertain outcomes, advanced persistent threat (APT) simulation.
Algorithm Details
- Attack Vector Selection
- Beam Search: Evaluates and ranks multiple potential attack paths or exploit chains.
- MCTS: Uses UCT for node selection (potential exploit steps) and random rollouts (simulating attack progression).
- Evidence/Vulnerability Scoring Based On:
- Likelihood of exploitability
- Potential impact (CIA triad)
- CVSS scores or similar metrics
- Strength of connection in an attack chain (e.g., vulnerability A enables exploit B)
- Process Management
- Tree-based state tracking of attack progression
- Statistical analysis of successful/failed simulated attack paths
- Progress monitoring against pentest objectives
Use Cases
- Automated vulnerability identification and chaining
- Exploit pathfinding and optimization
- Attack scenario simulation and "what-if" analysis
- Red teaming strategy development and refinement
- Assisting in manual pentesting by suggesting potential avenues
- Decision tree exploration for complex attack vectors
- Strategy optimization for achieving specific pentest goals (e.g., data exfiltration, privilege escalation)
License
MIT
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。