Perplexica MCP Server

Perplexica MCP Server

A Model Context Protocol server that acts as a proxy to provide LLM access to Perplexica's AI-powered search engine, enabling AI assistants to perform searches with various focus modes.

Category
访问服务器

README

Perplexica MCP Server

Perplexica MCP Server is a Model Context Protocol (MCP) server that acts as a proxy to provide LLM access to Perplexica's AI-powered search engine. This server enables AI assistants and other MCP clients to perform searches through the Perplexica API.

What This MCP Server Provides

  • Single Search Tool: Exposes Perplexica's search functionality as an MCP tool
  • API Proxy: Acts as a bridge between MCP clients and the Perplexica search endpoint
  • Parameter Passthrough: Forwards all search parameters (focus modes, models, etc.) to the Perplexica API
  • MCP Protocol Compliance: Implements the Model Context Protocol for seamless integration with AI assistants

Installation

To use the Perplexica MCP Server, you'll need to have Python 3.12 or later installed on your system.

  1. Clone this repository:
git clone https://github.com/yourusername/perplexica-mcp.git
cd perplexica-mcp
  1. Install the required dependencies:
pip install -e .

MCP Server Configuration

This server is designed to be used with MCP-compatible clients. Add the following configuration to your MCP client:

{
  "mcpServers": {
    "perplexica": {
      "command": "uv",
      "args": ["run", "/path/to/perplexica-mcp/perplexica_mcp_tool.py"],
      "env": {
        "PERPLEXICA_BACKEND_URL": "http://localhost:3000/api/search"
      }
    }
  }
}

Backend URL Configuration

The Perplexica MCP Server uses an environment variable to configure the backend URL. To set this up:

  1. Create a .env file in the root of the project (if it doesn't already exist)
  2. Add the PERPLEXICA_BACKEND_URL variable with your desired backend URL:
PERPLEXICA_BACKEND_URL=http://localhost:3000/api/search

The server will use this URL to communicate with the Perplexica backend. If the environment variable is not set, it will default to http://localhost:3000/api/search.

Usage

This MCP server provides a search tool that can be used by MCP clients to perform searches through Perplexica. The tool accepts the following parameters:

Search Tool Parameters

  • query (required): The search query string
  • focus_mode (required): The search focus mode
  • chat_model (optional): Chat model configuration
  • embedding_model (optional): Embedding model configuration
  • optimization_mode (optional): Performance optimization setting
  • history (optional): Conversation history
  • system_instructions (optional): Custom AI guidance
  • stream (optional): Whether to stream responses

Example Usage via MCP Client

When connected to an MCP client, you can use the search tool like this:

Search for "Python programming best practices" using webSearch focus mode

The MCP client will automatically invoke the search tool with the appropriate parameters.

Perplexica Integration

This MCP server acts as a proxy to the Perplexica search API. All search parameters and configurations are passed through to the underlying Perplexica service:

  • Focus Modes: Supports all Perplexica focus modes (webSearch, academicSearch, writingAssistant, wolframAlphaSearch, youtubeSearch, redditSearch)
  • Model Configuration: Passes through chat model and embedding model settings to Perplexica
  • Search Options: Forwards optimization modes, conversation history, and system instructions

For detailed information about Perplexica's capabilities and features, please refer to the Perplexica documentation.

Contributing

Contributions are welcome! Please open an issue or submit a pull request.

License

This project is licensed under the MIT License. See the LICENSE file for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选