Perplexity MCP Server
Integrates with Perplexity's API to provide web search and AI-powered answers with citations. Offers a three-tier research workflow: search for sources, ask for grounded AI answers, and ask_more for deeper analysis using advanced models.
README
Perplexity MCP Server
A FastMCP server that integrates with Perplexity's API to provide web search and grounded AI answers.
Features
Three-Tier Research Workflow
-
search- Ground yourself first- Find relevant sources before asking questions
- Returns URLs, titles, and snippets
- Use this when you don't know about a topic
-
ask- Get AI answers (DEFAULT)- AI-synthesized answers with web grounding
- Uses the
sonarmodel (fast and cost-effective) - Includes citations and optional images/related questions
-
ask_more- Dig deeper- More comprehensive analysis for complex questions
- Uses the
sonar-promodel (more capable but pricier) - Use when
askdoesn't provide sufficient depth
Prerequisites
- Python 3.10 or higher
- A Perplexity API key
- uv (recommended) or pip
Local Setup
1. Install Dependencies
Using uv (recommended):
uv pip install -e .
Or using pip:
pip install -e .
2. Configure API Key
Copy the example environment file:
cp .env.example .env
Edit .env and add your Perplexity API key:
PERPLEXITY_API_KEY=your_api_key_here
3. Run the Server
Test the server locally:
uv run fastmcp run server.py
Or with the fastmcp CLI:
fastmcp run server.py
4. Install in Claude Desktop
Install the server for use with Claude Desktop:
fastmcp install claude-code server.py
Or manually add to your Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):
{
"mcpServers": {
"perplexity": {
"command": "uv",
"args": ["run", "fastmcp", "run", "/absolute/path/to/server.py"],
"env": {
"PERPLEXITY_API_KEY": "your_api_key_here"
}
}
}
}
Cloud Deployment (FastMCP Cloud)
Deploy to fastmcp.cloud for easy hosting:
1. Push to GitHub
git init
git add .
git commit -m "Initial commit"
git remote add origin https://github.com/yourusername/perplexity-mcp.git
git push -u origin main
2. Deploy on FastMCP Cloud
- Visit fastmcp.cloud
- Sign in with GitHub
- Create a new project and connect your repo
- Configure:
- Entrypoint:
server.py - Environment Variables: Add
PERPLEXITY_API_KEY
- Entrypoint:
- Deploy!
Your server will be available at https://your-project-name.fastmcp.app/mcp
FastMCP Cloud automatically:
- ✅ Detects dependencies from
pyproject.toml - ✅ Deploys on every push to
main - ✅ Creates preview deployments for PRs
- ✅ Handles HTTP transport and authentication
Tool Usage Guide
Research Workflow Example
1. Don't know about a topic? → Use search()
search("latest AI research papers on transformers")
2. Found sources? → Use ask() to understand
ask("What are the key innovations in transformer models?")
3. Need more depth? → Use ask_more()
ask_more("Explain the mathematical foundations of attention mechanisms in transformers")
Tool Parameters
search(query, max_results=10, recency=None, domain_filter=None)
query: Search query stringmax_results: Number of results (default: 10)recency: Filter by time -"day","week","month", or"year"domain_filter: Include/exclude domains- Include:
["wikipedia.org", "github.com"] - Exclude:
["-reddit.com", "-pinterest.com"]
- Include:
ask(query, reasoning_effort="medium", ...)
query: Question to askreasoning_effort:"low","medium"(default), or"high"search_mode:"web"(default),"academic", or"sec"recency: Time filterdomain_filter: Domain filterreturn_images: Include images (default: False)return_related_questions: Include follow-up questions (default: False)
ask_more(query, reasoning_effort="medium", ...)
Same parameters as ask(), but uses the more powerful sonar-pro model.
Cost Optimization
- Start with
search: Free/cheap way to find sources - Default to
ask: Usessonar(cost-effective) - Escalate to
ask_more: Only when needed (more expensive)
Development
Project Structure
perplexity-mcp/
├── server.py # Main FastMCP server
├── pyproject.toml # Dependencies
├── .env.example # Environment template
└── README.md # This file
Inspect the Server
See what FastMCP Cloud will see:
fastmcp inspect server.py
API Reference
This server uses two Perplexity API endpoints:
- Search API (
/search) - Returns ranked search results - Chat Completions API (
/chat/completions) - Returns AI-generated answers
Supported models:
sonar- Fast, cost-effectivesonar-pro- More comprehensive
Troubleshooting
API Key Issues
If you get authentication errors:
- Verify your API key at https://www.perplexity.ai/settings/api
- Check that
PERPLEXITY_API_KEYis set correctly - Make sure there are no extra spaces or quotes
Timeout Errors
If requests timeout:
- The default timeout is 30s for search, 60s for chat
- Complex questions may take longer
- Consider using
reasoning_effort="low"for faster responses
Local Testing
Test individual tools:
uv run fastmcp dev server.py
This opens an interactive development interface.
License
MIT
Contributing
Contributions welcome! Please open an issue or PR.
Links
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。