Personal Expense Manager
Enables tracking and analyzing personal expenses stored in CSV files. Supports adding expenses with categorization, retrieving recent spending data, and generating automated analytical summaries with spending patterns and recommendations.
README
📊 MCP Server - Personal Expense Manager
An MCP (Model Context Protocol) server for managing and analyzing personal expenses from CSV files.
🚀 Features
- Add expenses to a CSV file with categorization
- Get recent expenses with day-based filtering
- MCP Resource for direct access to all expenses
- Specialized prompt that generates automatic analytical summaries
- Analysis by category and payment method
- Trend detection and spending patterns
📋 Requirements
pip install fastmcp mcp
🗂️ Project Structure
expenses-mcp-server/
├── server.py # Main MCP server
├── data/
│ └── expenses.csv # Expenses file (created automatically)
├── requirements.txt
└── README.md
🛠️ Installation & Usage
1. Clone or create the project
mkdir expenses-mcp-server
cd expenses-mcp-server
2. Create virtual environment (recommended)
python -m venv venv
source venv/bin/activate # Linux/Mac
# or
venv\Scripts\activate # Windows
3. Install dependencies
pip install fastmcp mcp
4. Run the server
python server.py
🔧 Available Functionalities
Tools
1. agregar_gasto (Add Expense)
Adds a new expense to the system.
Parameters:
fecha: Date in 'YYYY-MM-DD' formatcategoria: Expense category (e.g., "Food", "Transport")cantidad: Expense amount (float)metodo_pago: Payment method used
Example:
agregar_gasto("2024-01-15", "Groceries", 150.75, "Debit Card")
2. obtener_gastos_recientes (Get Recent Expenses)
Gets expenses from the last N days.
Parameters:
dias: Number of days to query (default: 5)
Example:
obtener_gastos_recientes(7) # Last 7 days
Resource
resource://gastos
Direct access to all stored expenses.
Specialized Prompt
Resumen de Gastos Recientes (Recent Expenses Summary)
Generates a prompt with structured data for AI to create a complete analysis including:
- 📈 Statistical calculations (totals, averages)
- 🏷️ Category analysis
- 💳 Payment method distribution
- 🔍 Trend identification
- 💡 Personalized recommendations
📊 CSV Structure
The data/expenses.csv file has the following structure:
fecha,categoria,cantidad,metodo_pago
2024-01-15,Groceries,150.75,Debit Card
2024-01-16,Transport,45.50,Cash
2024-01-17,Entertainment,89.99,Credit Card
🔌 MCP Client Integration
Python Client Example
import asyncio
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
async def main():
server_params = StdioServerParameters(
command="python",
args=["server.py"]
)
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
# Initialize session
await session.initialize()
# Add expense
result = await session.call_tool(
"agregar_gasto",
{
"fecha": "2024-01-18",
"categoria": "Restaurant",
"cantidad": 85.50,
"metodo_pago": "Credit Card"
}
)
print(result)
# Get recent expenses
expenses = await session.call_tool(
"obtener_gastos_recientes",
{"dias": 5}
)
print(expenses)
if __name__ == "__main__":
asyncio.run(main())
🎯 Use Cases
1. Daily Expense Tracking
# Add transport expense
agregar_gasto("2024-01-18", "Transport", 35.00, "Cash")
# Add food expense
agregar_gasto("2024-01-18", "Food", 120.00, "Debit Card")
2. Weekly Analysis
# Get last week summary
obtener_gastos_recientes(7)
3. Monthly Report
# Complete 30-day analysis
obtener_gastos_recientes(30)
📈 Example Generated Analysis
The specialized prompt generates analysis like:
📊 EXPENSE SUMMARY - LAST 5 DAYS
💰 TOTAL SPENT: $1,245.75
📅 DAILY AVERAGE: $249.15
🔢 TRANSACTIONS: 8 purchases
🏷️ CATEGORY DISTRIBUTION:
• Groceries: 45% ($560.25)
• Transport: 25% ($311.44)
• Entertainment: 20% ($249.15)
• Restaurant: 10% ($124.58)
💳 PAYMENT METHODS:
• Credit Card: 60%
• Debit Card: 30%
• Cash: 10%
📈 OBSERVATIONS:
• Highest spending on Wednesday ($420.50)
• "Groceries" category represents almost half of expenses
• Growing trend in credit card usage
💡 RECOMMENDATIONS:
• Consider bulk purchases to reduce grocery expenses
• Diversify payment methods for better control
• Set weekly limit for entertainment
🛠️ Troubleshooting
Error: "FileNotFoundError"
- Ensure the
data/directory exists - Server creates the file automatically with the first expense
Error: "Encoding issues"
- Server uses UTF-8 for special character compatibility
Error: "Invalid date format"
- Use exact format:
YYYY-MM-DD - Example:
2024-01-18
📝 License
MIT License
📞 Support
For issues and questions, open a ticket in the project repository.
Start tracking your expenses intelligently! 🚀
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。