Personal Knowledge Assistant

Personal Knowledge Assistant

Manages and analyzes personal information across email, social media, documents, and productivity metrics with AI-powered insights, communication pattern analysis, and cross-platform content management.

Category
访问服务器

README

Personal Knowledge Assistant MCP Server

A comprehensive Model Context Protocol (MCP) server that transforms how you manage and analyze your personal information across email, social media, documents, and productivity metrics.

Python 3.9+ MCP Compatible License: MIT Security: Encrypted

🚀 Features

📧 Email Intelligence

  • Smart Email Management: Search, analyze, and compose emails with AI assistance
  • Communication Pattern Analysis: Understand your email habits, response times, and relationship dynamics
  • Thread Analysis: Track email conversations and extract actionable insights
  • Automated Categorization: Intelligent labeling and organization of your inbox

🌐 Social Media Integration

  • Multi-Platform Support: Twitter, LinkedIn, Facebook, and Instagram
  • Content Performance Analysis: Track engagement metrics, reach, and audience insights
  • Optimal Timing: AI-powered recommendations for when to post
  • Cross-Platform Publishing: Post to multiple platforms simultaneously

📁 Document Management

  • Universal Search: Find documents across Google Drive, Dropbox, and local files
  • Content Analysis: Extract key insights and summaries from documents
  • Version Tracking: Monitor document changes and collaboration patterns
  • Smart Organization: Automatic tagging and categorization

📊 Personal Analytics

  • Productivity Metrics: Track work patterns, focus time, and task completion
  • Habit Monitoring: Build and maintain positive habits with data-driven insights
  • Goal Progress: Monitor and analyze progress toward personal and professional goals
  • Health & Wellness: Integrate mood, energy, and wellness tracking

🧠 AI-Powered Insights

  • Behavioral Pattern Detection: Identify trends in your communication and work habits
  • Predictive Analytics: Anticipate busy periods and optimize your schedule
  • Relationship Mapping: Visualize your professional and personal networks
  • Automated Reports: Daily, weekly, and monthly insight summaries

🔒 Privacy & Security

  • End-to-End Encryption: All data encrypted at rest and in transit
  • Local Processing: Sensitive analysis performed locally when possible
  • GDPR Compliant: Full data export and deletion capabilities
  • Audit Logging: Complete audit trail of all data access and processing

🎯 Quick Start

Prerequisites

  • Python 3.9 or higher
  • Claude Desktop app or compatible MCP client
  • API credentials for services you want to integrate

Installation

  1. Clone the repository
git clone https://github.com/vitalune/IPA-mcp.git
cd IPA-mcp
  1. Install dependencies
pip install -r requirements.txt
  1. Configure API credentials
cp config/config.example.yaml config/config.yaml
# Edit config/config.yaml with your API credentials
  1. Initialize the server
python -m src.main

Connect to Claude Desktop

Add this configuration to your Claude Desktop MCP settings:

{
  "mcpServers": {
    "personal-knowledge-assistant": {
      "command": "python",
      "args": ["-m", "src.main"],
      "cwd": "/path/to/IPA-mcp"
    }
  }
}

🛠️ Available Tools

The server provides 7 powerful MCP tools:

Tool Description Key Features
send_email Compose and send emails with AI assistance Smart composition, attachment support, multiple recipients
analyze_email_patterns Analyze communication patterns and relationships Response times, frequency analysis, sentiment tracking
post_social_media Create and schedule social media posts Multi-platform, optimal timing, hashtag suggestions
analyze_social_engagement Track social media performance and insights Engagement metrics, audience analysis, trend identification
manage_project_context Organize projects, tasks, and deadlines Intelligent prioritization, timeline tracking, team collaboration
track_personal_metrics Monitor productivity, habits, and goals Custom metrics, trend analysis, achievement tracking
generate_insights_report Create comprehensive analytics reports Multi-source data, actionable recommendations, export options

📖 Documentation

🔧 Configuration

Basic Configuration

# config/config.yaml
app:
  name: "Personal Knowledge Assistant"
  environment: "development"

security:
  encryption_enabled: true
  session_timeout_minutes: 60
  require_mfa: false

privacy:
  anonymize_logs: true
  data_retention_days: 90
  enable_analytics: false

integrations:
  gmail:
    enabled: true
    scopes: ["gmail.readonly", "gmail.send"]
  
  twitter:
    enabled: true
    scopes: ["tweet.read", "tweet.write"]
    
  linkedin:
    enabled: true
    scopes: ["r_liteprofile", "w_member_social"]

API Credentials

Set up your API credentials by following our detailed API Setup Guide:

  • Gmail/Google Drive: Google Cloud Console OAuth 2.0
  • Twitter: Twitter Developer Portal API keys
  • LinkedIn: LinkedIn Developer Program credentials
  • Other Services: Platform-specific setup instructions

🧪 Testing

Run the comprehensive test suite:

# Install test dependencies
pip install -r tests/requirements.txt

# Run all tests
pytest tests/

# Run specific test categories
pytest tests/unit/           # Unit tests
pytest tests/integration/    # Integration tests  
pytest tests/security/       # Security tests
pytest tests/mcp/           # MCP protocol compliance

# Generate coverage report
pytest --cov=src tests/

🚀 Example Usage

Analyze Your Email Patterns

# Ask Claude: "Analyze my email communication patterns for the last month"
# The MCP server will:
# 1. Fetch emails from the specified timeframe
# 2. Analyze response times, frequency, and relationships
# 3. Generate insights about your communication habits
# 4. Provide actionable recommendations

Cross-Platform Social Media Management

# Ask Claude: "Post about our product launch to Twitter and LinkedIn, optimized for engagement"
# The MCP server will:
# 1. Analyze your audience and engagement patterns
# 2. Suggest optimal posting times
# 3. Craft platform-appropriate content
# 4. Schedule posts across multiple platforms

Comprehensive Productivity Analysis

# Ask Claude: "Generate a weekly productivity report with insights and recommendations"
# The MCP server will:
# 1. Aggregate data from emails, calendar, and personal metrics
# 2. Identify productivity patterns and bottlenecks
# 3. Compare with previous periods
# 4. Provide personalized improvement suggestions

🏗️ Architecture

The Personal Knowledge Assistant is built with a modular, secure architecture:

├── src/
│   ├── main.py              # MCP server entry point
│   ├── tools/               # MCP tool implementations
│   ├── integrations/        # API client implementations
│   ├── utils/               # Analytics, NLP, and utilities
│   ├── models/              # Data models and schemas
│   └── config/              # Configuration and authentication
├── tests/                   # Comprehensive test suite
├── docs/                    # Documentation
└── config/                  # Configuration templates

Key Components

  • MCP Protocol Layer: Standards-compliant MCP server implementation
  • API Integration Layer: Secure, rate-limited connections to external services
  • Analytics Engine: Advanced data processing and insight generation
  • Security Layer: Encryption, authentication, and privacy controls
  • Storage Layer: Secure local data storage with optional cloud sync

🤝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Make your changes with tests
  4. Run the test suite (pytest tests/)
  5. Commit your changes (git commit -m 'Add amazing feature')
  6. Push to the branch (git push origin feature/amazing-feature)
  7. Open a Pull Request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

⚠️ Security & Privacy

Your privacy is our priority:

  • Local-First: Sensitive processing happens on your machine
  • Encrypted Storage: All data encrypted using industry-standard algorithms
  • Minimal Data Collection: We only collect what's necessary for functionality
  • Transparent Logging: Complete audit trail of all data access
  • User Control: Full data export and deletion capabilities

For more details, see our Security Documentation.

🆘 Support


<div align="center">

Transform your personal knowledge management with AI-powered insights

Get Started | Documentation | Community

</div>

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选