Personal RAG MCP Server
Enables storing and searching personal notes, documents, and snippets using semantic search and RAG capabilities across Claude Desktop, VS Code, and Open WebUI.
README
Personal RAG MCP Server
A Model Context Protocol (MCP) server that provides personal knowledge base with RAG (Retrieval-Augmented Generation) capabilities. Share context across Claude Desktop, Claude Code, VS Code, and Open WebUI.
Features
- Hybrid Storage: SQLite for full-text documents + Qdrant for semantic search
- Rich Metadata: Comprehensive metadata capture for future extensibility
- Dual Transport: stdio (for Claude Desktop/VS Code) + HTTP Streaming (for Open WebUI)
- Forward-Compatible: Strategy pattern allows adding advanced RAG features without refactoring
- Containerized: Runs in Docker, connects to existing Qdrant/Ollama/LiteLLM infrastructure
Architecture
User Input → MCP Tool
↓
[1] Generate embedding (Ollama)
↓
[2] Store full text + metadata in SQLite
↓
[3] Store vector in Qdrant
↓
Return confirmation
Search Query
↓
[1] Embed query (Ollama)
↓
[2] Search Qdrant (semantic search)
↓
[3] Retrieve full text from SQLite
↓
[4] Generate response (LiteLLM)
↓
Return answer + sources
MCP Tools
1. store_memory
Store notes, documents, or snippets in the knowledge base.
store_memory(
text="Your content here",
namespace="notes/personal", # Hierarchical organization
tags=["tag1", "tag2"],
title="Optional Title",
category="personal", # work, personal, family
content_type="note" # note, document, snippet
)
2. search_memory
Semantic search across your knowledge base.
search_memory(
query="What did I learn about X?",
namespace="notes/personal", # Optional filter
limit=5,
content_type="note" # Optional filter
)
3. ask_with_context
Ask questions with RAG (retrieval + generation).
ask_with_context(
question="What are my thoughts on X?",
namespace="notes/personal", # Optional filter
limit=5 # Context chunks to retrieve
)
Project Structure
personal-rag-mcp/
├── Dockerfile
├── requirements.txt
├── README.md
├── config/
│ ├── pipeline.yaml # RAG pipeline config
│ └── server.yaml # Server config
├── personal_rag_mcp/
│ ├── server.py # MCP server entry point
│ ├── storage/
│ │ ├── sqlite_store.py # SQLite document storage
│ │ ├── qdrant_store.py # Qdrant vector storage
│ │ └── schema.py # Pydantic metadata models
│ ├── pipeline/
│ │ ├── retriever.py # Retrieval strategies
│ │ ├── reranker.py # Reranking strategies
│ │ ├── expander.py # Query expansion
│ │ ├── generator.py # LLM generation
│ │ └── pipeline.py # RAG orchestration
│ └── utils/
│ ├── embeddings.py # Ollama embedding client
│ └── chunking.py # Text chunking
├── scripts/
│ ├── init_db.py # Initialize database
│ └── backup.py # Backup utility
└── tests/
Environment Variables
# Transport
TRANSPORT=http # or stdio
PORT=8765
# Storage
SQLITE_PATH=/app/data/documents.db
QDRANT_URL=http://qdrant:6333
# AI Services
OLLAMA_URL=http://ollama:11434
LITELLM_URL=http://litellm:4000
Development
Setup
# Create virtual environment
python -m venv venv
source venv/bin/activate # or `venv\Scripts\activate` on Windows
# Install dependencies
pip install -r requirements.txt
Run Locally (stdio)
export SQLITE_PATH=./data/documents.db
export QDRANT_URL=http://localhost:6333
export OLLAMA_URL=http://localhost:11434
export LITELLM_URL=http://localhost:4000
python -m personal_rag_mcp.server
Run Locally (HTTP)
export TRANSPORT=http
export PORT=8765
python -m personal_rag_mcp.server
Docker Deployment
Prerequisites
This MCP server depends on the following AI infrastructure services:
- Qdrant (vector database) - Port 6333
- Ollama (embeddings) - Port 11434
- LiteLLM (LLM proxy) - Port 4000/8000
Example Docker Compose Integration
services:
# Required: Qdrant vector database
qdrant:
image: qdrant/qdrant:latest
container_name: qdrant
ports:
- "6333:6333"
volumes:
- qdrant-data:/qdrant/storage
restart: unless-stopped
# Required: Ollama for embeddings
ollama:
image: ollama/ollama:latest
container_name: ollama
ports:
- "11434:11434"
volumes:
- ollama-data:/root/.ollama
restart: unless-stopped
# Required: LiteLLM proxy for LLM access
litellm-proxy:
image: ghcr.io/berriai/litellm:main-latest
container_name: litellm-proxy
ports:
- "4080:8000"
volumes:
- ./litellm_config.yaml:/app/config.yaml
environment:
- AWS_ACCESS_KEY_ID=${AWS_ACCESS_KEY_ID}
- AWS_SECRET_ACCESS_KEY=${AWS_SECRET_ACCESS_KEY}
- AWS_REGION=${AWS_REGION}
- OLLAMA_API_BASE=http://ollama:11434
entrypoint: ["litellm", "--config", "/app/config.yaml", "--port", "8000"]
depends_on:
- ollama
restart: unless-stopped
# Personal RAG MCP Server
personal-rag-mcp:
build: ./personal-rag-mcp
container_name: personal-rag-mcp
ports:
- "8765:8765"
environment:
- TRANSPORT=http
- PORT=8765
- QDRANT_URL=http://qdrant:6333
- OLLAMA_URL=http://ollama:11434
- LITELLM_URL=http://litellm-proxy:8000
- OPENAI_API_KEY=${LITELLM_API_KEY} # LiteLLM auth
- SQLITE_PATH=/app/data/documents.db
volumes:
- personal-rag-data:/app/data
- ./config/personal-rag:/app/config:ro
depends_on:
- qdrant
- ollama
- litellm-proxy
restart: unless-stopped
volumes:
qdrant-data:
ollama-data:
personal-rag-data:
LiteLLM Configuration Example
The MCP server uses LiteLLM as a unified proxy, which means you can use any LLM provider:
- Local: Ollama (llama3, deepseek, qwen, etc.)
- Cloud: OpenAI, Anthropic Claude, Google Gemini, Cohere
- AWS Bedrock: Claude, Llama, Mistral, etc.
- Azure OpenAI: GPT-4, GPT-3.5
- 100+ other providers: See LiteLLM docs
Simply configure your preferred models in litellm_config.yaml:
model_list:
# Local Ollama models (no API key needed)
- model_name: deepseek-r1-1.5b
litellm_params:
model: ollama/deepseek-r1:1.5b
api_base: http://ollama:11434
# AWS Bedrock models
- model_name: bedrock-claude-3-5-sonnet-v2
litellm_params:
model: bedrock/us.anthropic.claude-3-5-sonnet-20241022-v2:0
aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID
aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY
aws_region_name: us-east-2
# OpenAI models
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_key: os.environ/OPENAI_API_KEY
# Anthropic Claude
- model_name: claude-3-5-sonnet
litellm_params:
model: anthropic/claude-3-5-sonnet-20241022
api_key: os.environ/ANTHROPIC_API_KEY
# Embedding model (for semantic search)
- model_name: nomic-embed-text
litellm_params:
model: ollama/nomic-embed-text
api_base: http://ollama:11434
general_settings:
master_key: sk-1234 # Set LITELLM_API_KEY in .env
The server defaults to using whatever model is configured in LiteLLM. You can easily switch between local and cloud models without changing the MCP server code.
Environment File (.env)
# LiteLLM API Key
LITELLM_API_KEY=sk-1234
# AWS Credentials (optional, for Bedrock models)
AWS_ACCESS_KEY_ID=your_access_key
AWS_SECRET_ACCESS_KEY=your_secret_key
AWS_REGION=us-east-2
First-Time Setup
-
Pull required Ollama models:
docker exec ollama ollama pull nomic-embed-text docker exec ollama ollama pull deepseek-r1:1.5b -
Verify services are running:
curl http://localhost:6333/collections # Qdrant curl http://localhost:11434/api/tags # Ollama curl -H "Authorization: Bearer sk-1234" http://localhost:4080/v1/models # LiteLLM -
Test the MCP server:
docker exec personal-rag-mcp python /app/scripts/test_e2e.py
For complete infrastructure setup, see the parent repository.
Roadmap
Phase 1 (Current)
- ✅ Hybrid SQLite + Qdrant storage
- ✅ Basic RAG pipeline (vector retrieval)
- ✅ MCP tools (store, search, ask)
- ✅ Dual transport (stdio + HTTP)
Phase 2 (Future)
- [ ] Advanced RAG features (reranking, hybrid search, query expansion)
- [ ] Bulk document ingestion (PDF, DOCX parsing)
- [ ] Conversation history capture
- [ ] Multi-user support with authentication
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。