Personal Resume Agent
Enables Claude to intelligently query and analyze your resume using RAG technology. Supports skill matching against job requirements and answering questions about your professional background from locally stored resume files.
README
Personal Resume Agent
A personalized AI agent that reads your resume and provides intelligent responses about your professional background through a standardized MCP (Model Context Protocol) server interface. Built with RAG (Retrieval-Augmented Generation) capabilities to make your professional information queryable through Claude Desktop.
Features
- Resume Processing: Automatically reads and processes resume files (PDF, DOCX, TXT, MD)
- RAG System: Uses ChromaDB and sentence transformers for intelligent content retrieval
- MCP Server: Exposes functionality through standardized MCP protocol
- Skill Matching: Analyzes how well your skills match job requirements
- Natural Language Interface: Ask questions about your experience, skills, education, etc.
Quick Start
-
Install Dependencies
pip install -r requirements.txt -
Add Your Resume
# Place your resume files in the data/ directory cp your-resume.pdf data/ -
Test the Agent
cd src python personal_resume_agent.py -
Run as MCP Server
cd src python mcp_resume_server.py
Project Structure
personal-resume-agent/
├── src/ # Source code
│ ├── resume_rag.py # RAG system for resume processing
│ ├── personal_resume_agent.py # Main agent logic
│ └── mcp_resume_server.py # MCP server implementation
├── data/ # Resume files storage
├── tests/ # Test files
├── docs/ # Documentation
├── examples/ # Usage examples
└── requirements.txt # Python dependencies
Usage Examples
Direct Agent Usage
from personal_resume_agent import PersonalResumeAgent
agent = PersonalResumeAgent()
await agent.initialize()
# Ask questions about your resume
result = await agent.process_query("What programming languages do I know?")
print(result['response'])
# Analyze skill match for a job
match = await agent.get_skill_match("Python, React, AWS, Docker")
print(f"Match: {match['match_percentage']}%")
MCP Server Tools
The MCP server exposes these tools:
query_resume: Ask questions about resume contentget_agent_info: Get agent capabilities and statusanalyze_skill_match: Compare skills with job requirementsget_resume_summary: Get overview of resume knowledge base
Configuration
Claude Desktop Integration
Add to your Claude Desktop config (claude_desktop_config.json):
{
"mcpServers": {
"personal-resume": {
"command": "python",
"args": ["/path/to/personal-resume-agent/src/mcp_resume_server.py"],
"cwd": "/path/to/personal-resume-agent"
}
}
}
Supported File Formats
- PDF: Extracted using PyPDF2
- DOCX: Processed with python-docx
- TXT/MD: Plain text files
Requirements
- Python 3.8+
- ChromaDB for vector storage
- Sentence Transformers for embeddings
- PyPDF2 for PDF processing
- python-docx for Word documents
Privacy & Security
🔒 Important Privacy Notes:
- All resume data is processed locally on your machine
- No personal information is sent to external services
- Vector database is stored locally in
data/resume_vectordb/ - The
data/directory is excluded from version control - Never commit personal resume files to public repositories
Architecture
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Resume Files │───▶│ RAG System │───▶│ MCP Server │
│ (PDF/DOCX) │ │ (ChromaDB + │ │ (Claude Tool) │
│ │ │ Transformers) │ │ │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│
▼
┌─────────────────┐
│ Personal Resume │
│ Agent │
│ (Query Engine) │
└─────────────────┘
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
License
MIT License - See LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。