Personal Semantic Search MCP

Personal Semantic Search MCP

Enables semantic search over local notes and documents using natural language queries. Supports multiple file types (Markdown, Python, HTML, JSON, CSV, text) with fast local embeddings and persistent ChromaDB vector storage.

Category
访问服务器

README

Personal Semantic Search MCP

A Model Context Protocol (MCP) server that enables semantic search over your local notes and documents. Built for use with Claude Code and other MCP-compatible clients.

Features

  • Semantic Search: Find notes by meaning, not just keywords
  • Multiple File Types: Supports Markdown, Python, HTML, JSON, CSV, and plain text
  • Smart Chunking: Preserves document structure with header hierarchy
  • Fast Local Embeddings: Uses all-MiniLM-L6-v2 (384 dimensions, runs on CPU)
  • ChromaDB Storage: Persistent vector database with incremental indexing
  • File Watching: Optional real-time re-indexing on file changes

Architecture

┌─────────────────┐     ┌──────────────────┐     ┌─────────────────┐
│  Claude Code    │────▶│   MCP Server     │────▶│   ChromaDB      │
│  (MCP Client)   │     │   (FastMCP)      │     │   (Vectors)     │
└─────────────────┘     └──────────────────┘     └─────────────────┘
                               │
                               ▼
                        ┌──────────────────┐
                        │ Sentence-        │
                        │ Transformers     │
                        │ (Embeddings)     │
                        └──────────────────┘

Installation

# Clone the repository
git clone https://github.com/Ethan2298/personal-semantic-search-mcp.git
cd personal-semantic-search-mcp

# Create virtual environment
python -m venv .venv

# Activate (Windows)
.venv\Scripts\activate

# Activate (Unix/macOS)
source .venv/bin/activate

# Install dependencies
pip install -r requirements.txt

Configuration

Claude Code Setup

Add to your ~/.claude/.mcp.json:

{
  "mcpServers": {
    "semantic-search": {
      "command": "/path/to/your/.venv/Scripts/python.exe",
      "args": ["/path/to/your/mcp_server.py"]
    }
  }
}

Then enable in ~/.claude/settings.json:

{
  "enabledMcpjsonServers": ["semantic-search"]
}

Usage

MCP Tools (via Claude Code)

Once configured, Claude Code can use these tools:

Tool Description
search_notes Semantic search with natural language queries
index_notes Index or re-index your vault
get_index_stats Show indexing statistics

CLI Usage

# Index a folder
python search.py index ~/Desktop/Notes

# Search
python search.py query "how to implement authentication"

# Watch for changes (real-time indexing)
python search.py watch ~/Desktop/Notes

# Show statistics
python search.py stats

Module Overview

File Purpose
mcp_server.py FastMCP server exposing tools via stdio
search.py High-level search and indexing API
embedding_engine.py Sentence-transformer embeddings
vector_store.py ChromaDB storage and retrieval
text_chunker.py Document chunking with overlap
file_reader.py Multi-format text extraction
folder_watcher.py File system change detection

How It Works

  1. File Reading: Extracts text from various formats (Markdown, Python, HTML, etc.)
  2. Chunking: Splits documents into ~500 token chunks with 50 token overlap, preserving header hierarchy
  3. Embedding: Converts chunks to 384-dimensional vectors using all-MiniLM-L6-v2
  4. Storage: Stores vectors in ChromaDB with metadata (file path, headers, timestamps)
  5. Search: Embeds queries and finds nearest neighbors by cosine similarity

Performance Notes

  • First startup: ~10 seconds (loading sentence-transformers model)
  • Indexing speed: ~100 documents/minute (depends on size)
  • Search latency: <100ms after warmup
  • Model size: ~80MB (downloaded on first run)

Requirements

  • Python 3.10+
  • ~500MB disk space (model + dependencies)
  • Works on CPU (no GPU required)

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选