Personal Semantic Search MCP
Enables semantic search over local notes and documents using natural language queries. Supports multiple file types (Markdown, Python, HTML, JSON, CSV, text) with fast local embeddings and persistent ChromaDB vector storage.
README
Personal Semantic Search MCP
A Model Context Protocol (MCP) server that enables semantic search over your local notes and documents. Built for use with Claude Code and other MCP-compatible clients.
Features
- Semantic Search: Find notes by meaning, not just keywords
- Multiple File Types: Supports Markdown, Python, HTML, JSON, CSV, and plain text
- Smart Chunking: Preserves document structure with header hierarchy
- Fast Local Embeddings: Uses
all-MiniLM-L6-v2(384 dimensions, runs on CPU) - ChromaDB Storage: Persistent vector database with incremental indexing
- File Watching: Optional real-time re-indexing on file changes
Architecture
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ Claude Code │────▶│ MCP Server │────▶│ ChromaDB │
│ (MCP Client) │ │ (FastMCP) │ │ (Vectors) │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│
▼
┌──────────────────┐
│ Sentence- │
│ Transformers │
│ (Embeddings) │
└──────────────────┘
Installation
# Clone the repository
git clone https://github.com/Ethan2298/personal-semantic-search-mcp.git
cd personal-semantic-search-mcp
# Create virtual environment
python -m venv .venv
# Activate (Windows)
.venv\Scripts\activate
# Activate (Unix/macOS)
source .venv/bin/activate
# Install dependencies
pip install -r requirements.txt
Configuration
Claude Code Setup
Add to your ~/.claude/.mcp.json:
{
"mcpServers": {
"semantic-search": {
"command": "/path/to/your/.venv/Scripts/python.exe",
"args": ["/path/to/your/mcp_server.py"]
}
}
}
Then enable in ~/.claude/settings.json:
{
"enabledMcpjsonServers": ["semantic-search"]
}
Usage
MCP Tools (via Claude Code)
Once configured, Claude Code can use these tools:
| Tool | Description |
|---|---|
search_notes |
Semantic search with natural language queries |
index_notes |
Index or re-index your vault |
get_index_stats |
Show indexing statistics |
CLI Usage
# Index a folder
python search.py index ~/Desktop/Notes
# Search
python search.py query "how to implement authentication"
# Watch for changes (real-time indexing)
python search.py watch ~/Desktop/Notes
# Show statistics
python search.py stats
Module Overview
| File | Purpose |
|---|---|
mcp_server.py |
FastMCP server exposing tools via stdio |
search.py |
High-level search and indexing API |
embedding_engine.py |
Sentence-transformer embeddings |
vector_store.py |
ChromaDB storage and retrieval |
text_chunker.py |
Document chunking with overlap |
file_reader.py |
Multi-format text extraction |
folder_watcher.py |
File system change detection |
How It Works
- File Reading: Extracts text from various formats (Markdown, Python, HTML, etc.)
- Chunking: Splits documents into ~500 token chunks with 50 token overlap, preserving header hierarchy
- Embedding: Converts chunks to 384-dimensional vectors using
all-MiniLM-L6-v2 - Storage: Stores vectors in ChromaDB with metadata (file path, headers, timestamps)
- Search: Embeds queries and finds nearest neighbors by cosine similarity
Performance Notes
- First startup: ~10 seconds (loading sentence-transformers model)
- Indexing speed: ~100 documents/minute (depends on size)
- Search latency: <100ms after warmup
- Model size: ~80MB (downloaded on first run)
Requirements
- Python 3.10+
- ~500MB disk space (model + dependencies)
- Works on CPU (no GPU required)
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。