PicoScope MCP Server
Enables LLMs like Claude to interact with PicoScope oscilloscopes for signal acquisition, measurement, and analysis. Supports device management, data capture, triggering, and signal generation through natural language commands.
README
PicoScope MCP Server
A STDIO MCP server that enables LLMs like Claude to interact with PicoScope oscilloscopes for signal acquisition, measurement, and analysis. Built with FastMCP and the official PicoSDK Python bindings.
Features
- Device Management: Auto-discover and connect to PicoScope devices
- Channel Configuration: Set voltage ranges, coupling, and offsets
- Data Acquisition: Block capture and streaming modes
- Triggering: Simple and advanced trigger configurations
- Measurements: Frequency, amplitude, rise time, FFT, THD, and more
- Signal Generation: Control built-in arbitrary waveform generator
- AI-Native: Designed for natural language control via Claude and other LLMs
Quick Start
# Clone the repository
git clone https://github.com/markuskreitzer/picoscope_mcp.git
cd picoscope_mcp
# Install dependencies (requires uv package manager)
uv sync
# Run the MCP server
uv run picoscope-mcp
The server runs in STDIO mode and is ready to communicate with MCP clients like Claude Desktop.
Installation
Prerequisites
-
PicoSDK C Libraries (required for hardware operation)
- Windows: Download from PicoTech Downloads
- macOS: Download PicoScope software package
- Linux: Install via package manager:
# Ubuntu/Debian sudo apt-get install libps5000a libps4000a libps3000a libps2000a
-
Python 3.11+ with uv package manager
Install Dependencies
# Clone or navigate to the project directory
cd picoscope_mcp
# Install dependencies
uv sync
Usage
Running the Server
uv run picoscope-mcp
The server runs in STDIO mode, communicating via standard input/output for use with MCP-compatible clients.
Using with Claude Desktop
Add this configuration to your Claude Desktop config file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"picoscope": {
"command": "uv",
"args": [
"--directory",
"/absolute/path/to/picoscope_mcp",
"run",
"picoscope-mcp"
]
}
}
}
Restart Claude Desktop, and you'll see the PicoScope tools available in the MCP menu.
Testing Without Hardware
The server will run even without PicoScope hardware connected, though device operations will fail until:
- PicoSDK C libraries are installed
- A PicoScope device is connected
MCP Tools
Discovery & Connection
| Tool | Description |
|---|---|
list_devices |
Find all connected PicoScope devices |
connect_device |
Connect to a specific device (by serial) or first available |
get_device_info |
Get details about connected device |
disconnect_device |
Disconnect from current device |
Channel Configuration
| Tool | Description |
|---|---|
configure_channel |
Set channel parameters (range, coupling, offset) |
get_channel_config |
Query current channel settings |
set_timebase |
Configure sampling rate (informational) |
Triggering
| Tool | Description |
|---|---|
set_simple_trigger |
Configure edge trigger (rising/falling/both) |
Data Acquisition
| Tool | Description |
|---|---|
capture_block |
Single snapshot capture with pre/post trigger samples |
start_streaming |
Begin continuous data capture |
stop_streaming |
End streaming mode |
get_streaming_data |
Retrieve latest streaming data |
Analysis
| Tool | Description |
|---|---|
measure_frequency |
Calculate signal frequency |
measure_amplitude |
Measure voltage (pk-pk, RMS, etc.) |
measure_rise_time |
Edge timing analysis |
measure_pulse_width |
Pulse characteristics |
compute_fft |
Frequency domain analysis |
get_statistics |
Signal statistics (min/max/mean/std) |
measure_thd |
Total Harmonic Distortion |
Advanced
| Tool | Description |
|---|---|
set_signal_generator |
Configure AWG output |
stop_signal_generator |
Disable signal generator |
configure_math_channel |
Channel operations (A+B, A-B, etc.) |
export_waveform |
Save data to file (CSV/JSON/NumPy) |
configure_downsampling |
Set downsampling mode |
Example Usage with Claude
User: "Connect to the first PicoScope and measure the frequency on channel A"
Claude calls:
1. list_devices() -> finds available devices
2. connect_device() -> connects to first device
3. configure_channel(channel="A", enabled=true, voltage_range=5.0) -> enables channel A
4. set_simple_trigger(source="A", threshold_mv=0) -> sets auto-trigger
5. capture_block(pre_trigger_samples=1000, post_trigger_samples=1000) -> captures waveform
6. Returns captured data with time and voltage values
User can then analyze the returned data for frequency, or request additional captures.
Configuration
Typical Workflow
- Connect:
connect_device() - Configure Channels:
configure_channel()for each channel - Set Trigger:
set_simple_trigger() - Capture:
capture_block()orstart_streaming() - Analyze: Use measurement tools on captured data
Supported Hardware
- PS5000A Series (primary support)
- PS2000/3000/4000/6000 Series (planned)
Currently optimized for PS5000A. Other series will require device-specific implementations.
Development
Project Structure
picoscope_mcp/
├── src/picoscope_mcp/
│ ├── server.py # FastMCP server
│ ├── device_manager.py # Device abstraction
│ ├── models.py # Data structures
│ ├── utils.py # Helper functions
│ └── tools/ # MCP tool implementations
│ ├── discovery.py
│ ├── configuration.py
│ ├── acquisition.py
│ ├── analysis.py
│ └── advanced.py
└── tests/
└── test_tools.py
Running Tests
uv run pytest
Adding Support for New Device Series
- Update
device_manager.pyto detect device series - Import appropriate picosdk module (e.g.,
ps3000a) - Map device-specific constants and API calls
- Handle series-specific capabilities
Troubleshooting
"PicoSDK not found" Error
Install PicoSDK C libraries for your platform (see Prerequisites).
"No device connected" Errors
- Ensure PicoScope is connected via USB
- Check device appears in system (Windows Device Manager, macOS System Information, Linux
lsusb) - Verify PicoSDK drivers are installed
- Try reconnecting the device
Channel Configuration Fails
- Check voltage range is supported: 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20V
- Verify channel exists (A-D for 4-channel models)
Capture Timeout
- Ensure trigger settings are appropriate for signal
- Try increasing auto-trigger timeout
- Check signal is within configured voltage range
Roadmap
- [x] Phase 1: Foundation - Device discovery, connection, PS5000A support
- [ ] Phase 2: Advanced acquisition - Streaming mode, advanced triggers
- [ ] Phase 3: Multi-device support - PS2000/3000/4000/6000 series
- [ ] Phase 4: Enhanced analysis - Real-time FFT, automated characterization
- [ ] Phase 5: Visualization - Web dashboard for waveform viewing
See PROJECT_PLAN.md for detailed architecture and development plans.
Contributing
Contributions are welcome! This project is in active development.
How to Contribute
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
Development Setup
# Clone your fork
git clone https://github.com/YOUR_USERNAME/picoscope_mcp.git
cd picoscope_mcp
# Install dependencies including dev tools
uv sync
# Run tests
uv run pytest
Areas for Contribution
- Support for additional PicoScope series (PS2000, PS3000, PS4000, PS6000)
- Streaming mode implementation
- Advanced trigger modes (pulse width, window, logic)
- Additional measurement algorithms
- Documentation and examples
- Test coverage
- Bug reports and fixes
License
This project is licensed under the GNU General Public License v3.0 - see the LICENSE file for details.
Note: This license allows commercial use but requires derivative works to remain open source under GPLv3.
Acknowledgments
- Pico Technology for the PicoSDK Python wrappers
- Anthropic for the Model Context Protocol
- Jeff Lowin for FastMCP
- The open source community
References
- PicoScope Programmers Guides
- picosdk-python-wrappers
- FastMCP Documentation
- Model Context Protocol Specification
- Claude Desktop MCP Setup
Contact
- Issues: GitHub Issues
- Discussions: GitHub Discussions
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。