Pierre Fitness Platform MCP Server
Connects AI assistants to fitness data from over 150 wearables including Strava, Garmin, and Fitbit through the Model Context Protocol. It provides 47 tools for sports science-based analysis, training load management, recovery tracking, and personalized nutrition planning.
README
<div align="center"> <img src="templates/pierre-logo.svg" width="150" height="150" alt="Pierre Fitness Platform Logo"> <h1>Pierre Fitness Platform</h1> </div>
Pierre Fitness Platform connects AI assistants to fitness data from Strava, Garmin, Fitbit, WHOOP, COROS, and Terra (150+ wearables). Implements Model Context Protocol (MCP), A2A protocol, OAuth 2.0, and REST APIs for Claude, ChatGPT, and other AI assistants.
Intelligence System
Sports science-based fitness analysis including training load management, race predictions, sleep and recovery scoring, nutrition planning, and pattern detection.
See Intelligence Methodology and Nutrition Methodology for details.
Features
- MCP Protocol: JSON-RPC 2.0 for AI assistant integration
- A2A Protocol: Agent-to-agent communication
- OAuth 2.0 Server: RFC 7591 dynamic client registration
- 47 MCP Tools: Activities, goals, analysis, sleep, recovery, nutrition, recipes, configuration
- TypeScript SDK:
pierre-mcp-clientnpm package - Pluggable Providers: Compile-time provider selection
- TOON Format: Token-Oriented Object Notation output for ~40% LLM token reduction (spec)
Provider Support
| Provider | Feature Flag | Capabilities |
|---|---|---|
| Strava | provider-strava |
Activities, Stats, Routes |
| Garmin | provider-garmin |
Activities, Sleep, Health |
| WHOOP | provider-whoop |
Sleep, Recovery, Strain |
| Fitbit | provider-fitbit |
Activities, Sleep, Health |
| COROS | provider-coros |
Activities, Sleep, Recovery |
| Terra | provider-terra |
150+ wearables, Activities, Sleep, Health |
| Synthetic | provider-synthetic |
Development/Testing |
Build with specific providers:
cargo build --release # all providers
cargo build --release --no-default-features --features "sqlite,provider-strava" # strava only
See Pluggable Provider Architecture.
What You Can Ask
- "Calculate my daily nutrition needs for marathon training"
- "Analyze my training load - do I need a recovery day?"
- "Compare my three longest runs this month"
- "Analyze this meal: 150g chicken, 200g rice, 100g broccoli"
- "What's my predicted marathon time based on recent runs?"
See Tools Reference for the 47 available MCP tools.
Quick Start
git clone https://github.com/Async-IO/pierre_mcp_server.git
cd pierre_mcp_server
cp .envrc.example .envrc # edit with your settings
direnv allow # or: source .envrc
./bin/setup-and-start.sh # complete setup: fresh DB, admin user, server start
Server starts on http://localhost:8081. See Getting Started for detailed setup.
MCP Client Configuration
Add to Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json):
{
"mcpServers": {
"pierre-fitness": {
"command": "npx",
"args": ["-y", "pierre-mcp-client@next", "--server", "http://localhost:8081"]
}
}
}
The SDK handles OAuth 2.0 authentication automatically. See SDK Documentation.
Available MCP Tools
47 tools organized in 8 categories:
| Category | Tools | Description |
|---|---|---|
| Core Fitness | 6 | Activities, athlete profile, provider connections |
| Goals | 4 | Goal setting, suggestions, feasibility, progress |
| Analysis | 10 | Metrics, trends, patterns, predictions, recommendations |
| Sleep & Recovery | 5 | Sleep quality, recovery score, rest recommendations |
| Nutrition | 5 | BMR/TDEE, macros, USDA food search, meal analysis |
| Recipes | 7 | Training-aware meal planning and recipe storage |
| Configuration | 6 | User settings, training zones, profiles |
| Fitness Config | 4 | Fitness parameters, thresholds |
Full tool reference: docs/tools-reference.md
Server Management
./bin/setup-and-start.sh # complete setup: fresh DB, admin user, server start
./bin/start-server.sh # start backend only (loads .envrc)
./bin/stop-server.sh # stop backend
./bin/start-frontend.sh # start dashboard (http://localhost:5173)
Options for setup-and-start.sh:
--skip-fresh-start- preserve existing database--run-tests- run workflow tests after startup--admin-email EMAIL- custom admin email--admin-password PWD- custom admin password
User Portal Dashboard
Web-based dashboard for users and administrators at http://localhost:5173.
Features
- Role-Based Access: super_admin, admin, user roles with permission hierarchy
- User Registration: Self-registration with admin approval workflow
- API Key Management: Create, view, deactivate API keys
- MCP Tokens: Generate tokens for Claude Desktop and AI assistants
- Usage Analytics: Request patterns, tool usage charts
- Super Admin Impersonation: View dashboard as any user for support
User Roles
| Role | Capabilities |
|---|---|
| User | Own API keys, MCP tokens, analytics |
| Admin | + User approval, all users analytics |
| Super Admin | + Impersonation, admin tokens, system config |
First Admin Setup
cargo run --bin admin-setup -- create-admin-user \
--email admin@example.com \
--password SecurePassword123 \
--super-admin
See Frontend Documentation for detailed dashboard documentation.
Mobile App
React Native mobile app for iOS and Android with conversational AI interface.
Features
- AI Chat Interface: Conversational UI with markdown rendering and real-time streaming
- Fitness Provider Integration: Connect to Strava, Garmin, Fitbit, WHOOP, COROS via OAuth
- Activity Tracking: View and analyze your fitness activities
- Training Insights: Get AI-powered training recommendations
Quick Start
cd frontend-mobile
bun install
bun start # Start Expo development server
bun run ios # Run on iOS Simulator
See Mobile App README and Mobile Development Guide.
AI Coaches
Pierre includes an AI coaching system with 9 default coaching personas and support for user-created personalized coaches.
Default Coaches
The system includes 9 AI coaching personas across 5 categories:
| Category | Icon | Coaches |
|---|---|---|
| Training | 🏃 | Endurance Coach, Speed Coach |
| Nutrition | 🥗 | Sports Nutritionist, Hydration Specialist |
| Recovery | 😴 | Recovery Specialist, Sleep Coach |
| Recipes | 👨🍳 | Performance Chef, Meal Prep Expert |
| Analysis | 📊 | Data Analyst |
Default coaches are seeded automatically by ./bin/setup-and-start.sh and are visible to all users.
Personalized Coaches
Users can create their own AI coaches with custom:
- Name and personality
- System prompts and behavior
- Category assignment
- Avatar customization
User-created coaches appear in a "Personalized" section above system coaches and are private to each user.
Coach Seeder
To seed or refresh the default coaches:
cargo run --bin seed-coaches
This creates the 9 default AI coaching personas if they don't already exist.
Documentation
Reference
- Getting Started - installation, configuration, first run
- Architecture - system design, components, request flow
- Protocols - MCP, OAuth2, A2A, REST
- Authentication - JWT, API keys, OAuth2 flows
- Configuration - environment variables, algorithms
Development
- Development Guide - workflow, dashboard, testing
- Scripts Reference - 30+ development scripts
- CI/CD - GitHub Actions, pipelines
- Release Guide - releasing server and SDK to npm
- Contributing - code standards, PR workflow
Components
- SDK - TypeScript client for MCP integration
- Frontend - React dashboard
- Mobile - React Native mobile app
- Mobile Development - mobile dev setup guide
Methodology
- Intelligence - sports science formulas
- Nutrition - dietary calculations
Testing
cargo test # all tests
./scripts/lint-and-test.sh # full CI suite
./scripts/smoke-test.sh # quick validation (~3 min)
Contributing
See Contributing Guide.
License
Dual-licensed under Apache 2.0 or MIT.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。