Pinboard MCP Server

Pinboard MCP Server

Provides LLMs with read-only access to search, filter, and retrieve bookmark metadata from Pinboard.in at inference time via Model Context Protocol.

Category
访问服务器

README

Pinboard MCP Server

CI Python 3.10+

Read-only access to Pinboard.in bookmarks for LLMs via Model Context Protocol (MCP).

Overview

This server provides LLMs with the ability to search, filter, and retrieve bookmark metadata from Pinboard.in at inference time. Built on FastMCP 2.0, it offers four core tools for bookmark interaction while respecting Pinboard's rate limits and implementing intelligent caching.

Features

  • Read-only access to Pinboard bookmarks
  • Four MCP tools: searchBookmarks, listRecentBookmarks, listBookmarksByTags, listTags
  • Smart caching with LRU cache and automatic invalidation using posts/update endpoint
  • Rate limiting respects Pinboard's 3-second guideline between API calls
  • Field mapping converts Pinboard's legacy field names to intuitive ones (description→title, extended→notes)
  • Comprehensive testing with 76% code coverage and integration test harnesses

Installation

Via pip (recommended)

pip install pinboard-mcp-server

From source

git clone https://github.com/rossshannon/pinboard-bookmarks-mcp-server.git
cd pinboard-bookmarks-mcp-server
pip install -e .

Quick Start

  1. Get your Pinboard API token from https://pinboard.in/settings/password
  2. Set environment variable:
    export PINBOARD_TOKEN="username:1234567890ABCDEF"
    
  3. Start the server:
    pinboard-mcp-server
    

Usage with Claude Desktop

Add this configuration to your Claude Desktop settings:

{
  "mcpServers": {
    "pinboard": {
      "command": "pinboard-mcp-server",
      "env": {
        "PINBOARD_TOKEN": "your-username:your-token-here"
      }
    }
  }
}

Available Tools

1. searchBookmarks

Search bookmarks by query string across titles, notes, and tags.

Parameters:

  • query (string): Search query
  • limit (int, optional): Maximum results (default: 20, max: 100)

Example:

Search for "python testing" bookmarks

2. listRecentBookmarks

List bookmarks saved in the last N days.

Parameters:

  • days (int, optional): Days to look back (default: 7, max: 30)
  • limit (int, optional): Maximum results (default: 20, max: 100)

Example:

Show me bookmarks from the last 3 days

3. listBookmarksByTags

List bookmarks filtered by tags with optional date range.

Parameters:

  • tags (array): List of tags to filter by (1-3 tags)
  • from_date (string, optional): Start date in ISO format (YYYY-MM-DD)
  • to_date (string, optional): End date in ISO format (YYYY-MM-DD)
  • limit (int, optional): Maximum results (default: 20, max: 100)

Example:

Find bookmarks tagged with "python" and "api" from January 2024

4. listTags

List all tags with their usage counts.

Example:

What are my most used tags?

Configuration

Environment Variables

  • PINBOARD_TOKEN (required): Your Pinboard API token in format username:token

Rate Limiting

The server automatically enforces a 3-second delay between Pinboard API calls to respect their guidelines. Cached responses are returned immediately.

Caching Strategy

  • Query cache: LRU cache with 1000 entries for search results
  • Bookmark cache: Full bookmark list cached for 1 hour
  • Cache invalidation: Uses posts/update endpoint to detect changes
  • Tag cache: Tag list cached until manually refreshed

Testing

The project includes comprehensive test coverage with multiple test strategies:

Run all tests

# Activate virtual environment first
source ~/.venvs/pinboard-bookmarks-mcp-server/bin/activate

# Run all tests with coverage
pytest --cov=src --cov-report=term-missing

Real API testing

# Set your Pinboard token
export PINBOARD_TOKEN="username:token"

# Run real API tests
python test_mcp_harness.py

Mock API testing

# Run mock tests (no API token required)
python test_mcp_harness_mock.py

Development

Setup

# Clone and install
git clone https://github.com/rossshannon/pinboard-bookmarks-mcp-server.git
cd pinboard-bookmarks-mcp-server

# Create virtual environment
python -m venv ~/.venvs/pinboard-bookmarks-mcp-server
source ~/.venvs/pinboard-bookmarks-mcp-server/bin/activate

# Install in development mode
pip install -e ".[dev]"

Code Quality

# Linting and formatting
ruff check src/ tests/
ruff format src/ tests/

# Type checking
mypy src/

# Run tests
pytest -v

Architecture

  • FastMCP 2.0: MCP scaffolding with Tool abstraction and async FastAPI server
  • pinboard.py: Pinboard API client wrapper with error handling
  • Pydantic: Data validation and serialization with JSON Schema
  • ThreadPoolExecutor: Bridges async MCP with sync pinboard.py library
  • LRU Cache: In-memory caching with intelligent invalidation

Key Files

  • src/pinboard_mcp_server/main.py - MCP server entry point
  • src/pinboard_mcp_server/client.py - Pinboard API client with caching
  • src/pinboard_mcp_server/tools.py - MCP tool implementations
  • src/pinboard_mcp_server/models.py - Pydantic data models
  • tests/ - Comprehensive test suite
  • test_mcp_harness.py - Real API integration testing
  • test_mcp_harness_mock.py - Mock API testing

Performance

  • P50 response time: <250ms (cached responses)
  • P95 response time: <600ms (cold cache)
  • Rate limiting: 3-second intervals between API calls
  • Cache hit ratio: >90% for typical usage patterns

Security

  • API tokens are never logged or exposed in error messages
  • Read-only access to Pinboard data
  • Input validation on all tool parameters
  • Secure environment variable handling

Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Make your changes with tests
  4. Ensure all tests pass and code is formatted
  5. Submit a pull request

License

MIT License - see LICENSE file for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选