Pinecone Developer MCP

Pinecone Developer MCP

Pinecone Developer MCP

Category
访问服务器

Tools

create-index-for-model

Create a Pinecone index with integrated inference

upsert-records

Insert or update records in a Pinecone index

search-docs

Search Pinecone documentation for relevant information

list-indexes

List all Pinecone indexes

describe-index

Describe the configuration of a Pinecone index

describe-index-stats

Describe the statistics of a Pinecone index and its namespaces

search-records

Search an index for records that are similar to the query text

rerank-documents

Rerank a set of documents based on a query

cascading-search

Search across multiple indexes for records that are similar to the query text, deduplicate and rerank the results.

README

Pinecone Developer MCP Server

The Model Context Protocol (MCP) is a standard that allows coding assistants and other AI tools to interact with platforms like Pinecone. The Pinecone Developer MCP Server allows you to connect these tools with Pinecone projects and documentation.

Once connected, AI tools can:

  • Search Pinecone documentation to answer questions accurately.
  • Help you configure indexes based on your application's needs.
  • Generate code informed by your index configuration and data, as well as Pinecone documentation and examples.
  • Upsert and search for data in indexes, allowing you to test queries and evaluate results within your dev environment.

This MCP server is focused on improving the experience of developers working with Pinecone as part of their technology stack. It is intended for use with coding assistants. Pinecone also offers the Assistant MCP, which is designed to provide AI assistants with relevant context sourced from your knowledge base.

Setup

To configure the MCP server to access your Pinecone project, you will need to generate an API key using the console. Without an API key, your AI tool will still be able to search documentation. However, it will not be able to manage or query your indexes.

The MCP server requires Node.js. Ensure that node and npx are available in your PATH.

Next, you will need to configure your AI assistant to use the MCP server.

Configure Cursor

To add the Pinecone MCP server to a project, create a .cursor/mcp.json file in the project root (if it doesn't already exist) and add the following configuration:

{
  "mcpServers": {
    "pinecone": {
      "command": "npx",
      "args": [
        "-y", "@pinecone-database/mcp"
      ],
      "env": {
        "PINECONE_API_KEY": "<your pinecone api key>"
      }
    }
  }
}

You can check the status of the server in Cursor Settings > MCP.

To enable the server globally, add the configuration to the .cursor/mcp.json in your home directory instead.

Configure Claude desktop

Use Claude desktop to locate the claude_desktop_config.json file by navigating to Settings > Developer > Edit Config. Add the following configuration:

{
  "mcpServers": {
    "pinecone": {
      "command": "npx",
      "args": [
        "-y", "@pinecone-database/mcp"
      ],
      "env": {
        "PINECONE_API_KEY": "<your pinecone api key>"
      }
    }
  }
}

Restart Claude desktop. On the new chat screen, you should see a hammer (MCP) icon appear with the new MCP tools available.

Usage

Once configured, your AI tool will automatically make use of the MCP to interact with Pinecone. You may be prompted for permission before a tool can be used. Try asking your AI assistant to set up an example index, upload sample data, or search for you!

Tools

Pinecone Developer MCP Server provides the following tools for AI assistants to use:

  • search-docs: Search the official Pinecone documentation.
  • list-indexes: Lists all Pinecone indexes.
  • describe-index: Describes the configuration of an index.
  • describe-index-stats: Provides statistics about the data in the index, including the number of records and available namespaces.
  • create-index-for-model: Creates a new index that uses an integrated inference model to embed text as vectors.
  • upsert-records: Inserts or updates records in an index with integrated inference.
  • search-records: Searches for records in an index based on a text query, using integrated inference for embedding. Has options for metadata filtering and reranking.
  • cascading-search: Searches for records across multiple indexes, deduplicating and reranking the results.
  • rerank-documents: Reranks a collection of records or text documents using a specialized reranking model.

Limitations

Only indexes with integrated inference are supported. Assistants, indexes without integrated inference, standalone embeddings, and vector search are not supported.

Contributing

We welcome your collaboration in improving the developer MCP experience. Please submit issues in the GitHub issue tracker. Information about contributing can be found in CONTRIBUTING.md.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选