Pinecone MCP Server

Pinecone MCP Server

Enables AI assistants to perform semantic search, manage vectors, and interact with Pinecone vector databases through standardized MCP tools. Supports querying, upserting, deleting vectors and monitoring database statistics for knowledge base operations.

Category
访问服务器

README

Pinecone MCP Server

A Model Context Protocol server for Pinecone vector database operations.

This MCP server provides programmatic access to Pinecone vector database operations, enabling AI assistants to perform semantic search, manage vectors, and interact with your knowledge base through standardized MCP tools.

Features

Tools

🔍 query_vectors

Perform semantic search on your Pinecone database

  • Input: Text query, optional top_k and include_metadata parameters
  • Output: JSON response with matching vectors and similarity scores
  • Use case: Find relevant documents based on natural language queries

upsert_vectors

Add new documents to your vector database

  • Input: Array of texts, optional metadata and IDs
  • Output: Confirmation of successful vector insertion
  • Use case: Index new documents or update existing knowledge base

🗑️ delete_vectors

Remove vectors from your database

  • Input: Array of vector IDs or delete_all flag
  • Output: Confirmation of deletion operation
  • Use case: Clean up outdated information or reset database

📊 get_index_stats

Monitor your Pinecone database

  • Input: None
  • Output: Index statistics including vector count and configuration
  • Use case: Track database usage and performance

Quick Start

Prerequisites

  • Node.js 18+
  • Pinecone account and API key
  • OpenAI API key (for embeddings)

Installation

  1. Clone and install dependencies:
git clone <your-repo-url>
cd pinecone-mcp-server
npm install
  1. Build the server:
npm run build
  1. Configure environment variables:
export PINECONE_API_KEY="your_pinecone_key"
export OPENAI_API_KEY="your_openai_key"
export PINECONE_INDEX_NAME="your_index_name"  # optional, defaults to "ad-assessor-docs"
  1. Run the server:
node build/index.js

MCP Configuration

For Claude Desktop

Add to your MCP configuration file:

MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "pinecone": {
      "command": "node",
      "args": ["/path/to/pinecone-mcp-server/build/index.js"],
      "env": {
        "PINECONE_API_KEY": "your_key_here",
        "OPENAI_API_KEY": "your_key_here",
        "PINECONE_INDEX_NAME": "your_index_name"
      }
    }
  }
}

For Cline (VSCode)

Add to: %APPDATA%/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json

{
  "mcpServers": {
    "pinecone": {
      "command": "node",
      "args": ["C:\\path\\to\\pinecone-mcp-server\\build\\index.js"],
      "env": {
        "PINECONE_API_KEY": "your_key_here",
        "OPENAI_API_KEY": "your_key_here",
        "PINECONE_INDEX_NAME": "your_index_name"
      },
      "disabled": false,
      "autoApprove": []
    }
  }
}

Docker Deployment

Build Docker Image

docker build -t pinecone-mcp .

Run Container

docker run -e PINECONE_API_KEY=your_key \
           -e OPENAI_API_KEY=your_key \
           -e PINECONE_INDEX_NAME=your_index \
           -p 3000:3000 \
           pinecone-mcp

Docker Compose

version: '3.8'
services:
  pinecone-mcp:
    build: .
    environment:
      - PINECONE_API_KEY=your_key
      - OPENAI_API_KEY=your_key
      - PINECONE_INDEX_NAME=your_index
    ports:
      - "3000:3000"

Development

Project Structure

pinecone-server/
├── src/
│   └── index.ts          # Main MCP server implementation
├── build/
│   └── index.js          # Compiled JavaScript
├── Dockerfile            # Docker configuration
├── package.json          # Dependencies and scripts
├── tsconfig.json         # TypeScript configuration
└── README.md            # This file

Development Commands

# Install dependencies
npm install

# Build for production
npm run build

# Development with auto-rebuild
npm run watch

# Debug with MCP Inspector
npm run inspector

Adding New Tools

  1. Define tool schema in ListToolsRequestSchema handler
  2. Implement tool logic in CallToolRequestSchema handler
  3. Update this README with new tool documentation

API Keys Setup

Pinecone

  1. Sign up at pinecone.io
  2. Create a new project and index
  3. Copy your API key from the dashboard

OpenAI

  1. Sign up at platform.openai.com
  2. Navigate to API Keys section
  3. Create a new secret key

Troubleshooting

Common Issues

"Cannot find module" errors:

  • Ensure all dependencies are installed: npm install
  • Check that the build completed successfully: npm run build

Pinecone connection issues:

  • Verify API key is correct and has proper permissions
  • Check that your index exists and is accessible
  • Ensure your Pinecone environment/region is correct

OpenAI API errors:

  • Confirm API key is valid and has credits
  • Check rate limits and usage quotas
  • Verify the model name is correct (text-embedding-ada-002)

Debugging

Use the MCP Inspector for debugging:

npm run inspector

This provides a web interface to test your MCP server interactively.

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

License

MIT License - see LICENSE file for details

Support

For issues and questions:

  • Open an issue on GitHub
  • Check the MCP documentation: https://modelcontextprotocol.io
  • Review Pinecone documentation: https://docs.pinecone.io

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选