Pinecone MCP Server
Enables interaction with Pinecone vector databases for storing and searching embeddings. Supports similarity search, metadata filtering, and vector operations for semantic search and RAG applications.
README
Pinecone MCP Server
MCP server for Pinecone vector database. Store and search embeddings for similarity search, semantic search, and RAG (Retrieval Augmented Generation) applications.
Features
- Index Management: Create, list, describe, and delete vector indexes
- Vector Operations: Upsert, query, fetch, update, and delete vectors
- Similarity Search: Find similar vectors with cosine, euclidean, or dot product metrics
- Metadata Filtering: Hybrid search with metadata filters
- Namespaces: Data isolation for multi-tenancy
- Collections: Create backups from indexes
- Statistics: Get vector counts and index stats
Setup
Prerequisites
- Pinecone account
- API key and environment name
Environment Variables
PINECONE_API_KEY(required): Your Pinecone API keyPINECONE_ENVIRONMENT(required): Your Pinecone environment
How to get credentials:
- Go to app.pinecone.io
- Sign up or log in
- Navigate to API Keys section
- Copy your API key
- Note your environment (e.g.,
us-west1-gcp,us-east-1-aws) - Store as
PINECONE_API_KEYandPINECONE_ENVIRONMENT
Index Types
Serverless (Recommended)
- Pay per usage
- Auto-scaling
- No infrastructure management
- Available regions: AWS (us-east-1, us-west-2), GCP (us-central1, us-west1), Azure (eastus)
Pod-based
- Fixed capacity
- Dedicated resources
- More control over performance
- Higher cost
Vector Dimensions
Match your embedding model:
- OpenAI text-embedding-ada-002: 1536 dimensions
- OpenAI text-embedding-3-small: 1536 dimensions
- OpenAI text-embedding-3-large: 3072 dimensions
- sentence-transformers/all-MiniLM-L6-v2: 384 dimensions
- sentence-transformers/all-mpnet-base-v2: 768 dimensions
Distance Metrics
- cosine - Cosine similarity (recommended for most use cases)
- euclidean - Euclidean distance
- dotproduct - Dot product similarity
Available Tools
Index Management
list_indexes
List all indexes in the project.
Example:
indexes = await list_indexes()
create_index
Create a new vector index.
Parameters:
name(string, required): Index namedimension(int, required): Vector dimensionmetric(string, optional): Distance metric (default: 'cosine')spec_type(string, optional): 'serverless' or 'pod' (default: 'serverless')cloud(string, optional): 'aws', 'gcp', or 'azure' (default: 'aws')region(string, optional): Region (default: 'us-east-1')
Example:
index = await create_index(
name="my-index",
dimension=1536, # OpenAI embeddings
metric="cosine",
spec_type="serverless",
cloud="aws",
region="us-east-1"
)
describe_index
Get index configuration and status.
Example:
info = await describe_index(index_name="my-index")
delete_index
Delete an index.
Example:
result = await delete_index(index_name="my-index")
Vector Operations
upsert_vectors
Insert or update vectors with metadata.
Parameters:
index_name(string, required): Index namevectors(list, required): List of vector objectsnamespace(string, optional): Namespace (default: "")
Vector format:
{
"id": "vec1",
"values": [0.1, 0.2, 0.3, ...], # Must match index dimension
"metadata": {"key": "value"} # Optional
}
Example:
result = await upsert_vectors(
index_name="my-index",
vectors=[
{
"id": "doc1",
"values": [0.1, 0.2, ...], # 1536 dimensions
"metadata": {
"title": "Document 1",
"category": "tech",
"year": 2024
}
},
{
"id": "doc2",
"values": [0.3, 0.4, ...],
"metadata": {
"title": "Document 2",
"category": "science"
}
}
],
namespace="production"
)
query_vectors
Query similar vectors.
Parameters:
index_name(string, required): Index namevector(list, optional): Query vector (use this OR id)id(string, optional): Vector ID to use as query (use this OR vector)top_k(int, optional): Number of results (default: 10)namespace(string, optional): Namespace (default: "")include_values(bool, optional): Include vectors (default: False)include_metadata(bool, optional): Include metadata (default: True)filter(dict, optional): Metadata filter
Example:
# Query by vector
results = await query_vectors(
index_name="my-index",
vector=[0.1, 0.2, ...], # Your query embedding
top_k=5,
filter={"category": {"$eq": "tech"}, "year": {"$gte": 2023}},
include_metadata=True
)
# Query by existing vector ID
results = await query_vectors(
index_name="my-index",
id="doc1",
top_k=5
)
Response:
{
"matches": [
{
"id": "doc1",
"score": 0.95,
"metadata": {"title": "Document 1", "category": "tech"}
}
]
}
fetch_vectors
Fetch vectors by IDs.
Example:
vectors = await fetch_vectors(
index_name="my-index",
ids=["doc1", "doc2", "doc3"],
namespace="production"
)
update_vector
Update vector values or metadata.
Example:
# Update values
result = await update_vector(
index_name="my-index",
id="doc1",
values=[0.5, 0.6, ...]
)
# Update metadata
result = await update_vector(
index_name="my-index",
id="doc1",
set_metadata={"category": "updated", "year": 2025}
)
delete_vectors
Delete vectors.
Example:
# Delete by IDs
result = await delete_vectors(
index_name="my-index",
ids=["doc1", "doc2"]
)
# Delete by filter
result = await delete_vectors(
index_name="my-index",
filter={"year": {"$lt": 2020}}
)
# Delete all in namespace
result = await delete_vectors(
index_name="my-index",
delete_all=True,
namespace="test"
)
Statistics & Utility
describe_index_stats
Get index statistics.
Example:
stats = await describe_index_stats(index_name="my-index")
# Returns: dimension, totalVectorCount, indexFullness, namespaces
list_vector_ids
List all vector IDs.
Example:
ids = await list_vector_ids(
index_name="my-index",
namespace="production",
prefix="doc",
limit=100
)
create_collection
Create a collection (backup) from an index.
Example:
collection = await create_collection(
name="my-backup",
source_index="my-index"
)
Namespaces
Namespaces provide data isolation within an index:
# Production data
await upsert_vectors(index_name="my-index", vectors=[...], namespace="prod")
# Test data
await upsert_vectors(index_name="my-index", vectors=[...], namespace="test")
# Query only production
results = await query_vectors(index_name="my-index", vector=[...], namespace="prod")
Metadata Filtering
Filter vectors during queries using metadata:
Operators:
$eq- Equal$ne- Not equal$gt- Greater than$gte- Greater than or equal$lt- Less than$lte- Less than or equal$in- In array$nin- Not in array
Examples:
# Simple filter
filter={"category": {"$eq": "tech"}}
# Range filter
filter={"year": {"$gte": 2020, "$lte": 2024}}
# Multiple conditions
filter={
"$and": [
{"category": {"$eq": "tech"}},
{"year": {"$gte": 2020}}
]
}
# OR condition
filter={
"$or": [
{"category": {"$eq": "tech"}},
{"category": {"$eq": "science"}}
]
}
# In array
filter={"category": {"$in": ["tech", "science", "engineering"]}}
RAG Example with OpenAI
import openai
# 1. Generate embedding
response = openai.Embedding.create(
input="What is machine learning?",
model="text-embedding-ada-002"
)
query_embedding = response['data'][0]['embedding']
# 2. Query Pinecone
results = await query_vectors(
index_name="knowledge-base",
vector=query_embedding,
top_k=3,
include_metadata=True
)
# 3. Get context from results
context = "\n".join([match['metadata']['text'] for match in results['matches']])
# 4. Generate answer with context
answer = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{"role": "system", "content": f"Answer based on this context:\n{context}"},
{"role": "user", "content": "What is machine learning?"}
]
)
Rate Limits
Free Tier (Starter)
- 100,000 operations/month
- 1 pod/index
- 100 indexes max
Paid Tiers
- Standard: $70/month, unlimited operations
- Enterprise: Custom pricing, dedicated support
Best Practices
- Match dimensions: Ensure vector dimensions match index
- Use namespaces: Separate prod/test/dev data
- Add metadata: Enable hybrid search and filtering
- Batch upserts: Insert multiple vectors per request
- Use serverless: For most applications (cost-effective)
- Monitor usage: Track vector count and operations
- Create backups: Use collections for important data
- Optimize queries: Use appropriate top_k values
Common Use Cases
- Semantic Search: Find similar documents or products
- RAG: Retrieval for LLM context
- Recommendation Systems: Similar item recommendations
- Duplicate Detection: Find near-duplicate content
- Anomaly Detection: Identify outliers
- Image Search: Visual similarity search
- Chatbot Memory: Store conversation context
Error Handling
Common errors:
- 401 Unauthorized: Invalid API key
- 404 Not Found: Index or vector not found
- 400 Bad Request: Invalid dimensions or parameters
- 429 Too Many Requests: Rate limit exceeded
- 503 Service Unavailable: Pinecone service issue
API Documentation
Support
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。