Pipedream MCP Server

Pipedream MCP Server

Enables interaction with over 2,800 APIs and applications through Pipedream's Connect platform. Provides managed OAuth authentication and API request capabilities for integrating multiple services through natural language.

Category
访问服务器

README

Pipedream MCP Server

⚠️ Important Notice: This MCP server is a reference implementation only and is no longer actively maintained. For production use, we recommend using Pipedream's remote MCP server instead.

Recommended: Use Pipedream's Remote MCP Server

For the best experience, use Pipedream's hosted MCP server which provides:

  • 2,800+ APIs and 10,000+ tools through a single server
  • Built-in authentication: no manual token management required
  • Multiple tool modes: sub-agent and full configuration
  • Automatic app discovery
  • Enterprise-grade reliability and security

🚀 Get started: Pipedream MCP Documentation

🎮 Try it now: Check out our open source chat app at chat.pipedream.com


Self-Hosting (Reference Implementation)

This reference implementation shows how you can:

See the consumer-facing MCP server in action at mcp.pipedream.com and check out a demo of the developer-facing product at chat.pipedream.com.

We published this code as a reference, so you can better understand how to use Pipedream Connect for such an application. This is a reference implementation specifically for self-hosting the server and may not be fully documented.

For production use, we strongly recommend using our remote MCP server instead.

⭐ Reference Implementation Features

  • Run your own MCP server for over 2,800 apps and APIs
  • Manage servers for your users, in your own app
  • Connect accounts, configure params, and make API requests, all via tools
  • Fully-managed OAuth and credential storage (see security docs)

🚀 Getting Started

Pipedream's MCP servers use the Pipedream Connect API to manage auth and make API requests. To run an MCP server, you'll need a Pipedream project and Pipedream API credentials.

  1. Sign up for Pipedream
  2. Create a project. Any accounts connected via MCP will be stored here.
  3. Create a Pipedream OAuth client
  4. Set the environment variables (See .env.example) (directly in your shell session, dot files, etc.):
PIPEDREAM_CLIENT_ID=your_client_id
PIPEDREAM_CLIENT_SECRET=your_client_secret
PIPEDREAM_PROJECT_ID=your_project_id
PIPEDREAM_PROJECT_ENVIRONMENT=development

Pipedream concepts to understand

If you're running MCP servers for your app, you'll likely want to use the SSE interface. The SSE server accepts two route params:

  1. external_user_id — This is your user’s ID, in your system — whatever you use to uniquely identify them. Any requests made to that route are coupled to that end user, and would use the auth Pipedream stores for that user. See the docs for more detail.
  2. app — The app's "name slug" (the unique identifier for the app), found in the Authentication section of any Pipedream app. For example, the app slug for Slack is slack.

If your user 123 wants to connect to the slack MCP server, your MCP client would make a request to the /123/slack route. See the SSE docs below for more detail.

Server overview

There are two ways to use this MCP server.

1 - App specific /{external_user_id}/{app} This is currently available at mcp.pipedream.com. You can use an endpoint for each app. All the tools available for that app will be available at that endpoint.

2 - Dynamic /{external_user_id} This is an experimental version, since it relies on tools being able to update dynamically. We use this server to power the tools on chat.pipedream.com.

[!NOTE] > Check out the docs to learn more about enabling app discovery with the MCP server.

Hosting your own server

Using the Dockerfile

If you have Docker installed locally, you can build and run the container:

> docker build -t pipedream-connect .
> docker run -d --name pd-mcp -p 3010:3010 --env-file .env pipedream-connect:latest

This exposes a generic MCP server at http://localhost:3010/:external_user_id/:app.

Development

cp .env.example .env and fill in the details of your dev project.

pnpm install

Start the server with Streamable HTTP Transport

pnpm dev:http

You can use the optional env var PD_SDK_DEBUG to print out all the requests and responses going to the Connect API

PD_SDK_DEBUG=true pnpm dev:http

Then run the inspector:

npx @modelcontextprotocol/inspector

Use http://localhost:3010/v1/{external_user_id}/{app} for Streamable HTTP Transport or http://localhost:3010/{external_user_id}/{app} for SSE Transport.

These URLs can also be used by other clients (e.g. Cursor).

Stdio Transport setup

Stdio has only been tested with the MCP Inspector.

npx @modelcontextprotocol/inspector bun src/stdio.ts

See the logs for the inspector URL.

Ensure the left side of the inspector matches this:

Screenshot 2025-03-12 at 1 05 37 PM

Then press "List Tools" to fetch the list of MCP tools.

License

Pipedream Source Available License Version 1.0 - See https://github.com/PipedreamHQ/pipedream/blob/master/LICENSE

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选