Pipefy MCP Server
Enables LLMs to interact with the Pipefy GraphQL API to manage pipes, cards, database tables, and records through natural language. It provides tools for searching, creating, and retrieving detailed information about Pipefy workflows and database entities.
README
Pipefy MCP Server
MCP (Model Context Protocol) server for integrating Pipefy GraphQL API with LLMs.
Overview
This MCP server enables LLMs to interact with Pipefy through comprehensive tools for managing pipes, cards, database tables, and records.
Features
Pipes & Cards
- pipefy_list_pipes - List available pipes and organizations
- pipefy_get_pipe - Get detailed pipe information (phases, members, fields, labels)
- pipefy_list_cards - List cards in a pipe with optional search
- pipefy_get_card - Get comprehensive card details with all field values
- pipefy_search_cards - Search cards by specific field values
- pipefy_create_card - Create a new card in a pipe
- pipefy_get_phase - Get phase details and fields
Database Tables & Records
- pipefy_list_tables - List database tables in an organization
- pipefy_get_table - Get detailed table information (fields, members, webhooks)
- pipefy_create_table - Create a new database table
- pipefy_list_table_records - List records from a table
- pipefy_get_table_record - Get comprehensive record details with all field values
- pipefy_create_table_record - Create a new record in a table
All tools support both Markdown (human-readable) and JSON (machine-readable) output formats.
Installation
# Install dependencies using uv
uv sync
# Or with pip
pip install -e .
Configuration
Set your Pipefy API token as an environment variable:
export PIPEFY_API_TOKEN=your_api_token_here
To get your API token:
- Go to Pipefy Settings
- Navigate to Personal Access Tokens
- Create a new token with appropriate permissions
Usage
Running the Server
# Run with stdio transport (default)
python main.py
# Or if installed as a script
pipefy-mcp
Testing with MCP Inspector
PIPEFY_API_TOKEN=your_token npx @modelcontextprotocol/inspector python main.py
Cursor IDE Integration
Add to your .cursor/mcp.json:
{
"mcpServers": {
"pipefy": {
"command": "python",
"args": ["/path/to/pipefy-mcp/main.py"],
"env": {
"PIPEFY_API_TOKEN": "your_api_token_here"
}
}
}
}
Example Queries
Once connected, you can ask the LLM things like:
Pipes & Cards
- "List all cards in pipe 301234567"
- "Get details for card 123456789"
- "Search for cards with email john@example.com in pipe 301234567"
- "Show me the phases in pipe 301234567"
- "Create a new card in pipe 301234567 with title 'New Request'"
Database Tables & Records
- "List all database tables in organization 12345"
- "Show me the structure of table ZtEdWh"
- "Create a new table called 'Customers' in organization 12345"
- "List all records from table ZtEdWh"
- "Get details for record 987654"
- "Add a new customer record to table ZtEdWh"
API Reference
pipefy_get_pipe
Get detailed information about a Pipefy pipe.
Parameters:
pipe_id(required): The unique ID of the piperesponse_format: "markdown" (default) or "json"
pipefy_list_cards
List cards from a specific pipe.
Parameters:
pipe_id(required): The pipe ID to list cards fromlimit: Maximum cards to return (1-50, default: 20)search: Optional search term for card titlesresponse_format: "markdown" (default) or "json"
pipefy_get_card
Get detailed information about a specific card.
Parameters:
card_id(required): The unique ID of the cardresponse_format: "markdown" (default) or "json"
pipefy_search_cards
Search cards by a specific field value.
Parameters:
pipe_id(required): The pipe ID to search infield_id(required): The field ID to search byfield_value(required): The value to search forlimit: Maximum cards to return (1-50, default: 20)response_format: "markdown" (default) or "json"
pipefy_get_phase
Get phase details and fields.
Parameters:
phase_id(required): The unique ID of the phaseresponse_format: "markdown" (default) or "json"
pipefy_list_pipes
List Pipefy pipes available to the user.
Parameters:
organization_id: Optional organization ID to filter byresponse_format: "markdown" (default) or "json"
pipefy_create_card
Create a new card in a specific pipe.
Parameters:
pipe_id(required): The pipe IDfields(required): List of field objects withfield_idandfield_valuetitle: Optional card titleresponse_format: "markdown" (default) or "json"
Database Tables API
pipefy_list_tables
List database tables from a specific organization.
Parameters:
organization_id(required): The organization ID to list tables fromresponse_format: "markdown" (default) or "json"
pipefy_get_table
Get detailed information about a specific database table.
Parameters:
table_id(required): The alphanumeric ID of the table (e.g., 'ZtEdWh')response_format: "markdown" (default) or "json"
Returns: Table details including fields, members, webhooks, and record count.
pipefy_create_table
Create a new database table in an organization.
Parameters:
organization_id(required): The organization ID where the table will be createdname(required): The name for the new tablecolor: Optional color for the table (e.g., 'blue', 'red', 'green', 'lime', 'yellow')response_format: "markdown" (default) or "json"
Returns: Details of the created table including its ID.
Table Records API
pipefy_list_table_records
List records from a database table.
Parameters:
table_id(required): The alphanumeric ID of the tablelimit: Maximum records to return (1-50, default: 20)response_format: "markdown" (default) or "json"
pipefy_get_table_record
Get detailed information about a specific table record.
Parameters:
record_id(required): The numeric ID of the recordresponse_format: "markdown" (default) or "json"
Returns: Comprehensive record details with all field values.
pipefy_create_table_record
Create a new record in a database table.
Parameters:
table_id(required): The alphanumeric ID of the tabletitle(required): The title for the new recordfields: List of field objects withfield_idandfield_valueresponse_format: "markdown" (default) or "json"
Returns: Details of the created record including its ID.
Development
Project Structure
pipefy-mcp/
├── main.py # Main server with all tools
├── pyproject.toml # Project configuration
├── README.md # This file
└── .cursor/skills/ # MCP builder skill reference
Adding New Tools
Follow the pattern in main.py:
- Define a Pydantic model for input validation
- Use
@mcp.tooldecorator with proper annotations - Include comprehensive docstrings
- Implement error handling with
_handle_api_error - Support both response formats
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。