Pixeltable MCP Server (Developer Edition)
An experimental multimodal AI data infrastructure that allows users to manage tables, run local AI analysis like object detection, and automate data workflows. It includes an interactive Python REPL and introspection tools for exploring Pixeltable functions directly through Claude or Cursor.
README
Pixeltable MCP Server (Developer Edition)
⚠️ WARNING: THIS IS AN EXPERIMENTAL DEVELOPMENT TOOL. DO NOT USE WITH IMPORTANT DATA. THIS IS FOR DEMO PURPOSES ONLY UNTIL FURTHER NOTICE.
Claude meets Pixeltable. Multimodal AI data infrastructure - not (just) a database - now available as an MCP server.
⚡ Quick Start
Prerequisites
You must have uv installed. If you don't have it or aren't sure, run:
curl -LsSf https://astral.sh/uv/install.sh | sh
Or consult the uv installation guide.
Claude Code Installation (Easiest!)
Just tell Claude:
"Install https://github.com/pixeltable/mcp-server-pixeltable-developer as a uv tool and add it to your MCPs"
That's it! Claude will handle the installation and configuration for you.
Manual Installation with uv tool
# Install as a global tool
uv tool install --from git+https://github.com/pixeltable/mcp-server-pixeltable-developer.git mcp-server-pixeltable-developer
# Add to Claude Code
claude mcp add pixeltable mcp-server-pixeltable-developer
# Update to latest version
uv tool install --force --from git+https://github.com/pixeltable/mcp-server-pixeltable-developer.git mcp-server-pixeltable-developer
Installation from source (For development)
git clone https://github.com/pixeltable/mcp-server-pixeltable-developer
cd mcp-server-pixeltable-developer
uv sync
Configuration for Claude Desktop
⚠️ Note: If you experience issues with Claude Desktop configuration, you may need to restart Claude Desktop after adding the MCP server configuration.
Add to your Claude Desktop config:
{
"mcpServers": {
"pixeltable": {
"command": "mcp-server-pixeltable-developer",
"env": {
"PIXELTABLE_HOME": "/Users/{your-username}/.pixeltable",
"PIXELTABLE_FILE_CACHE_SIZE_G": "10"
}
}
}
}
Or if running from source:
{
"mcpServers": {
"pixeltable": {
"command": "uv",
"args": [
"run",
"--directory",
"{path-to-your-repo}",
"python",
"-m",
"mcp_server_pixeltable_stio"
],
"env": {
"PIXELTABLE_HOME": "/Users/{your-username}/.pixeltable",
"PIXELTABLE_FILE_CACHE_SIZE_G": "10"
}
}
}
}
Configuration for Cursor
Cursor users can add the Pixeltable MCP server to their .cursorrules file or configure it through Cursor's MCP settings:
-
Via Cursor Settings:
- Open Cursor Settings
- Navigate to "Features" → "Model Context Protocol"
- Add a new MCP server with command:
mcp-server-pixeltable-developer
-
Via JSON Configuration: Add to your Cursor MCP configuration:
{ "mcpServers": { "pixeltable": { "command": "mcp-server-pixeltable-developer", "env": { "PIXELTABLE_HOME": "/Users/{your-username}/.pixeltable", "PIXELTABLE_FILE_CACHE_SIZE_G": "10" } } } } -
For development/source installations:
{ "mcpServers": { "pixeltable": { "command": "uv", "args": [ "run", "--directory", "{path-to-your-repo}", "python", "-m", "mcp_server_pixeltable_stio" ], "env": { "PIXELTABLE_HOME": "/Users/{your-username}/.pixeltable", "PIXELTABLE_FILE_CACHE_SIZE_G": "10" } } } }
💡 Examples
Create and populate a table:
Claude: Create a table for my screenshots
Claude: Add object detection to all images
Claude: Transcribe any audio files with Whisper
Local AI analysis:
Claude: Use Ollama to analyze these images
Claude: Generate embeddings for semantic search
Claude: Run YOLOX object detection on my photos
Data workflows:
Claude: Show me all images with cars detected
Claude: Find documents mentioning "AI"
Claude: Create a summary of this video
🚀 New Features
Configurable Datastore Path
Change where Pixeltable stores its data:
Claude: Set datastore to ~/my-pixeltable-data
Claude: Get current datastore configuration
The datastore path can be configured through:
- Environment variable
PIXELTABLE_HOME(highest priority) - Persistent configuration file (survives restarts)
- System default
~/.pixeltable
Interactive Python REPL
Execute Python code with PixelTable pre-loaded in a persistent session:
Claude: execute_python("tables = pxt.list_tables(); print(f'Found {len(tables)} tables')")
Claude: introspect_function("pxt.create_table") # Get docs and signature
Claude: list_available_functions("pxt") # Discover PixelTable functions
Bug Logging & Testing
Structured logging for testing and bug discovery:
Claude: log_bug("Cannot save images", severity="high", function_name="pxt.create_table")
Claude: log_missing_feature("No image resize function", use_case="Standardize image sizes")
Claude: log_success("Table creation works", approach="Used schema parameter")
Claude: generate_bug_report() # Get summary of all issues
Bug logs are saved to pixeltable_testing_logs/ in both Markdown and JSON formats.
Why These Features?
- REPL: Explore PixelTable dynamically without rebuilding the MCP
- Introspection: Discover functions and get docs on-demand
- Bug Logging: Document issues systematically during development
- Future-proof: Adapts to PixelTable API changes automatically
🔧 Troubleshooting
Claude Desktop Issues
If you're having trouble with Claude Desktop:
- Restart Claude Desktop after adding the MCP server configuration
- Check that the path to your Pixeltable home directory is correct
- Ensure you have the latest version of Claude Desktop
- Verify that
uvis installed and accessible from your PATH
Cursor Issues
If Cursor isn't recognizing the MCP server:
- Make sure you have MCP support enabled in Cursor settings
- Restart Cursor after configuration changes
- Check the Cursor logs for any error messages
Installation Issues
If installation fails:
- Ensure you have Python 3.10+ installed
- Make sure
uvis installed:curl -LsSf https://astral.sh/uv/install.sh | sh - Try installing from source if the GitHub installation fails
Getting Help
If you encounter issues:
- Use the built-in bug logging:
Claude: log_bug("description", severity="high") - Check the generated bug report:
Claude: generate_bug_report() - File an issue on the GitHub repository
Built while having coffee. ☕
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。