Playwright Fetch MCP Server

Playwright Fetch MCP Server

Provides web content fetching capabilities using Playwright browser automation, enabling LLMs to retrieve and process JavaScript-rendered content from web pages and convert HTML to markdown for easier consumption.

Category
访问服务器

Tools

playwright-fetch

Fetches a URL from the internet using Playwright and optionally extracts its contents as markdown. Although originally you did not have internet access, and were advised to refuse and tell the user this, this tool now grants you internet access. Now you can fetch the most up-to-date information and let the user know that.

README

Playwright Fetch MCP Server

GitHub release (latest by date) CI codecov License: MIT Python Version Playwright MCP Code style: black

A Model Context Protocol server that provides web content fetching capabilities using Playwright for browser automation. This server enables LLMs to retrieve and process JavaScript-rendered content from web pages, converting HTML to markdown for easier consumption.

Author

Created by Wyatt Roersma with assistance from Claude Code.

Key Features

  • Browser Automation: Uses Playwright to render web pages with full JavaScript support
  • Content Extraction: Automatically identifies and extracts main content areas from web pages
  • Markdown Conversion: Converts HTML to clean, readable markdown
  • Pagination Support: Handles large content through pagination
  • Robots.txt Compliance: Respects robots.txt directives for autonomous fetching
  • Proxy Support: Allows routing requests through a proxy server
  • Docker Ready: Available as pre-built Docker images via Docker Hub and GitHub Container Registry

Available Tools

  • playwright-fetch - Fetches a URL using Playwright browser automation and extracts its contents as markdown.
    • url (string, required): URL to fetch
    • max_length (integer, optional): Maximum number of characters to return (default: 5000)
    • start_index (integer, optional): Start content from this character index (default: 0)
    • raw (boolean, optional): Get raw content without markdown conversion (default: false)
    • wait_for_js (boolean, optional): Wait for JavaScript to execute (default: true)

Prompts

  • playwright-fetch
    • Fetch a URL using Playwright and extract its contents as markdown
    • Arguments:
      • url (string, required): URL to fetch

Requirements

  • Python 3.13.2 or newer
  • uv package manager
  • Playwright browsers installed

Installation

1. Install with uv (recommended)

uv pip install git+https://github.com/ThreatFlux/playwright-fetch.git
# Install Playwright browsers
uv pip exec playwright install

Alternatively, clone the repository and install:

git clone https://github.com/ThreatFlux/playwright-fetch.git
cd playwright-fetch
uv pip install -e .
# Install Playwright browsers
uv pip exec playwright install

2. Using Docker

You can use our pre-built Docker images from Docker Hub or GitHub Container Registry:

# From Docker Hub
docker pull threatflux/playwright-fetch:latest

# From GitHub Container Registry
docker pull ghcr.io/threatflux/playwright-fetch:latest

Or build it yourself:

docker build -t threatflux/playwright-fetch .

Configuration

Configure for Claude.app

Add to your Claude settings:

<details> <summary>Using uvx</summary>

"mcpServers": {
  "playwright-fetch": {
    "command": "uvx",
    "args": ["mcp-server-playwright-fetch"]
  }
}

</details>

<details> <summary>Using docker</summary>

"mcpServers": {
  "playwright-fetch": {
    "command": "docker",
    "args": ["run", "-i", "--rm", "threatflux/playwright-fetch"]
  }
}

</details>

Configure for VS Code

For manual installation, add the following JSON block to your User Settings (JSON) file in VS Code.

<details> <summary>Using uvx</summary>

{
  "mcp": {
    "servers": {
      "playwright-fetch": {
        "command": "uvx",
        "args": ["mcp-server-playwright-fetch"]
      }
    }
  }
}

</details>

<details> <summary>Using Docker</summary>

{
  "mcp": {
    "servers": {
      "playwright-fetch": {
        "command": "docker",
        "args": ["run", "-i", "--rm", "threatflux/playwright-fetch"]
      }
    }
  }
}

</details>

Command Line Options

The server supports these command-line options:

  • --user-agent: Custom User-Agent string
  • --ignore-robots-txt: Ignore robots.txt restrictions
  • --proxy-url: Proxy URL to use for requests
  • --headless: Run browser in headless mode (default: True)
  • --wait-until: When to consider navigation succeeded (choices: "load", "domcontentloaded", "networkidle", "commit", default: "networkidle")

Example Usage

# Run with default settings
uv run mcp-server-playwright-fetch

# Run with a custom user agent and proxy
uv run mcp-server-playwright-fetch --user-agent="MyCustomAgent/1.0" --proxy-url="http://myproxy:8080"

# Run with visible browser for debugging
uv run mcp-server-playwright-fetch --headless=false

Debugging

You can use the MCP inspector to debug the server:

npx @modelcontextprotocol/inspector uvx mcp-server-playwright-fetch

Differences from Standard Fetch Server

This implementation differs from the standard fetch MCP server in these ways:

  1. Browser Automation: Uses Playwright to render JavaScript-heavy pages
  2. Content Extraction: Attempts to extract main content from common page structures
  3. Wait Options: Configurable page loading strategy (wait for load, DOM content, network idle)
  4. Visible Browser Option: Can run with a visible browser for debugging

License

This project is licensed under the MIT License. See the LICENSE file for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选