Playwright MCP HTTP Server
Provides browser automation capabilities via HTTP endpoints by wrapping the official Playwright MCP package, enabling serverless deployments and cloud environments where STDIO-based communication is not possible.
README
Playwright MCP HTTP Server
A standalone HTTP service that wraps the official @playwright/mcp package to provide browser automation capabilities via HTTP endpoints. This service enables the use of Playwright MCP in serverless environments where STDIO-based communication is not possible.
Features
- 🌐 HTTP-based MCP Protocol - Access Playwright MCP via standard HTTP requests
- 🚀 Serverless Compatible - Works in serverless/cloud environments (Railway, Render, Fly.io, GCP Cloud Run, etc.)
- 🔄 MCP v0.1 Compatible - Fully implements the Model Context Protocol specification
- 🎭 Full Playwright Support - All Playwright browser automation tools available
- 🐳 Docker Ready - Includes Dockerfile for easy containerization
- ⚡ Production Ready - Health checks, graceful shutdown, error handling
- ☁️ Live Deployment - Pre-deployed to Google Cloud Run (see below)
Quick Start
Prerequisites
- Node.js 18+ (LTS recommended)
- npm or yarn
Installation
# Clone the repository
git clone https://github.com/mcpmessenger/playwright-mcp.git
cd playwright-mcp
# Install dependencies
npm install
# Build the project
npm run build
# Start the server
npm start
The server will start on port 8931 by default. You can access:
- Service Info: http://localhost:8931/
- Health Check: http://localhost:8931/health
- MCP Endpoint: http://localhost:8931/mcp (POST only)
🚀 Live Production Instance
The service is deployed to Google Cloud Run and ready to use:
- Service URL: https://playwright-mcp-http-server-554655392699.us-central1.run.app
- Health Check: https://playwright-mcp-http-server-554655392699.us-central1.run.app/health
- MCP Endpoint: https://playwright-mcp-http-server-554655392699.us-central1.run.app/mcp (POST only)
You can use the live instance immediately without deploying your own. See Usage Examples below.
Development
# Run in development mode with auto-reload
npm run dev
Configuration
Configuration is done via environment variables. Create a .env file or set environment variables:
| Variable | Default | Description |
|---|---|---|
PORT |
8931 |
HTTP server port |
PLAYWRIGHT_BROWSER |
chromium |
Browser type (chromium, firefox, webkit) |
PLAYWRIGHT_HEADLESS |
true |
Run browser in headless mode |
LOG_LEVEL |
info |
Logging level (error, warn, info, debug) |
MAX_SESSIONS |
(unlimited) | Maximum concurrent browser sessions |
SESSION_TIMEOUT |
(none) | Session timeout in seconds |
CORS_ORIGIN |
* |
CORS allowed origins |
See .env.example for a template.
API Documentation
POST /mcp
Main MCP protocol endpoint. Accepts JSON-RPC 2.0 messages.
Request:
{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/call",
"params": {
"name": "browser_navigate",
"arguments": {
"url": "https://example.com"
}
}
}
Response:
{
"jsonrpc": "2.0",
"id": 1,
"result": {
"content": [
{
"type": "text",
"text": "Navigation completed"
}
],
"isError": false
}
}
GET /health
Health check endpoint. Returns service status.
Response:
{
"status": "healthy",
"version": "1.0.0",
"uptime": 3600,
"timestamp": "2024-12-01T12:00:00.000Z"
}
GET /
Service information endpoint.
Response:
{
"name": "Playwright MCP HTTP Server",
"version": "1.0.0",
"protocol": "MCP v0.1",
"endpoints": {
"mcp": "/mcp",
"health": "/health"
}
}
Supported MCP Methods
The server supports all standard MCP methods:
initialize- Initialize MCP connectioninitialized- Confirm initializationtools/list- List available Playwright toolstools/call- Invoke a Playwright tool
Available Playwright Tools
All tools from @playwright/mcp are supported:
browser_navigate- Navigate to a URLbrowser_snapshot- Get accessibility snapshotbrowser_take_screenshot- Capture screenshotbrowser_click- Click an elementbrowser_type- Type textbrowser_fill_form- Fill form fieldsbrowser_evaluate- Execute JavaScriptbrowser_wait_for- Wait for conditionsbrowser_close- Close browser/page
For detailed tool parameters, see the Playwright MCP documentation.
Using the Server
- Start locally with
npm install, build (npm run build), then runnpm start(or usenpm run devfor auto-reload during development). - Call
/,/health, or/mcpvia curl/Postman/Playwright MCP clients; the/mcpendpoint accepts JSON-RPC POST requests (see the example below). - Adjust behavior by editing
.envor setting env vars such asPORT,PLAYWRIGHT_BROWSER, andPLAYWRIGHT_HEADLESS. - Alternatively, containerize the service with
docker build -t playwright-mcp-http-server .anddocker run -p 8931:8931 ...for consistent deployments.
Updating the GitHub Repository
- Pull the latest changes before making edits:
git pull --rebase origin main. - Use
git statusto see touched files, then stage withgit add <files>and commit with a descriptive message. - Push your branch with
git push origin HEADand open a pull request if the change needs review.
Example Usage
Using curl
# List available tools
curl -X POST http://localhost:8931/mcp \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/list"
}'
# Navigate to a page
curl -X POST http://localhost:8931/mcp \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 2,
"method": "tools/call",
"params": {
"name": "browser_navigate",
"arguments": {
"url": "https://example.com"
}
}
}'
# Take a screenshot
curl -X POST http://localhost:8931/mcp \
-H "Content-Type: application/json" \
-d '{
"jsonrpc": "2.0",
"id": 3,
"method": "tools/call",
"params": {
"name": "browser_take_screenshot",
"arguments": {
"fullPage": true
}
}
}'
Using JavaScript/TypeScript
// Use the live production instance or replace with your own deployment URL
const MCP_SERVER_URL = 'https://playwright-mcp-http-server-554655392699.us-central1.run.app/mcp';
async function callPlaywrightMCP(method: string, params?: any) {
const response = await fetch(MCP_SERVER_URL, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
jsonrpc: '2.0',
id: Date.now(),
method,
params,
}),
});
return response.json();
}
// List tools
const tools = await callPlaywrightMCP('tools/list');
// Navigate
await callPlaywrightMCP('tools/call', {
name: 'browser_navigate',
arguments: { url: 'https://example.com' },
});
// Take screenshot
const screenshot = await callPlaywrightMCP('tools/call', {
name: 'browser_take_screenshot',
arguments: { fullPage: true },
});
Note: The /mcp endpoint requires POST requests with JSON-RPC 2.0 formatted messages. GET requests will return a 404 error.
Deployment
Railway
- Create a new Railway project
- Connect your Git repository
- Railway will auto-detect Node.js and use
npm start - Set environment variables if needed
- Deploy!
The service will use Railway's $PORT environment variable automatically.
Render
- Create a new Web Service on Render
- Connect your Git repository
- Build command:
npm install && npm run build - Start command:
npm start - Set environment variables if needed
- Deploy!
Google Cloud Platform (Cloud Run)
See DEPLOY_GCP.md for detailed instructions.
Quick deploy:
# Set your project ID
export GCP_PROJECT_ID="your-project-id"
# Deploy (Linux/Mac)
chmod +x deploy-gcp.sh && ./deploy-gcp.sh
# Deploy (Windows PowerShell)
.\deploy-gcp.ps1 -ProjectId "your-project-id"
Or manually:
PROJECT_ID="your-project-id"
IMAGE="gcr.io/${PROJECT_ID}/playwright-mcp-http-server"
docker build -t $IMAGE .
docker push $IMAGE
gcloud run deploy playwright-mcp-http-server \
--image $IMAGE \
--region us-central1 \
--platform managed \
--allow-unauthenticated \
--port 8931 \
--memory 2Gi \
--cpu 2
Fly.io
- Install Fly CLI:
curl -L https://fly.io/install.sh | sh - Login:
fly auth login - Launch app:
fly launch - Deploy:
fly deploy
Docker
# Build the image
docker build -t playwright-mcp-http-server .
# Run the container
docker run -p 8931:8931 playwright-mcp-http-server
# With environment variables
docker run -p 8931:8931 \
-e PORT=8931 \
-e PLAYWRIGHT_HEADLESS=true \
playwright-mcp-http-server
Docker Compose
version: '3.8'
services:
playwright-mcp:
build: .
ports:
- "8931:8931"
environment:
- PORT=8931
- PLAYWRIGHT_HEADLESS=true
healthcheck:
test: ["CMD", "node", "-e", "require('http').get('http://localhost:8931/health', (r) => {process.exit(r.statusCode === 200 ? 0 : 1)})"]
interval: 30s
timeout: 10s
retries: 3
start_period: 40s
Architecture
The service works by:
- HTTP Server (Express) receives JSON-RPC requests
- MCP Handler processes the requests and routes them to Playwright
- Playwright Process Manager spawns
@playwright/mcpas a child process - STDIO Communication handles JSON-RPC messages via stdin/stdout
- Response is formatted and returned via HTTP
This architecture allows the Playwright process to run independently while being accessible via HTTP.
Troubleshooting
Service won't start
- Check that Node.js 18+ is installed:
node --version - Verify dependencies are installed:
npm install - Check logs for error messages
Playwright browser not found
- The browser will be downloaded automatically on first run
- For Docker, ensure system dependencies are installed (included in Dockerfile)
- Check network connectivity for browser downloads
High memory usage
- Consider setting
MAX_SESSIONSto limit concurrent sessions - Ensure
browser_closeis called when done with a session - Monitor for memory leaks in long-running processes
Timeout errors
- Increase request timeout if operations take longer than 30 seconds
- Check network connectivity to target URLs
- Verify Playwright process is not crashed
Development
Project Structure
playwright-mcp-http-server/
├── src/
│ ├── server.ts # HTTP server setup
│ ├── mcp-handler.ts # MCP protocol handler
│ ├── playwright-process.ts # Playwright process management
│ ├── config.ts # Configuration
│ └── types/
│ └── mcp.ts # TypeScript types
├── dist/ # Compiled JavaScript (generated)
├── package.json
├── tsconfig.json
├── Dockerfile
└── README.md
Building
npm run build
Running Tests
Note: Tests are not yet implemented but planned for future releases
License
MIT
References
Support
For issues and questions, please open an issue on the repository.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。