PlotMCP Server

PlotMCP Server

An MCP server that enables LLMs to generate high-quality SVG charts using matplotlib, supporting various plot types like line, bar, and heatmaps. It provides flexible configuration for dimensions and axis scales, returning either raw SVG content or paths to saved image files.

Category
访问服务器

README

PlotMCP Server

PlotMCP is a powerful Model Context Protocol (MCP) server designed to enable LLMs to generate high-quality SVG charts from structured data. It leverages fastmcp for the server infrastructure and matplotlib for consistent, precise chart rendering.

Key Features

  • Pure SVG Rendering: Generates static SVG format with no external JavaScript dependencies. Safe, portable, and easy to embed.
  • Multiple Plot Types: Supports Line, Scatter, Bar, Area, Histogram, Box, Heatmap, Contour, and Pie charts.
  • Flexible Configuration: Full control over titles, dimensions, margins, and axis properties (linear, log, and symlog scales).
  • Output Management: When --output-dir is configured, automatically saves generated charts and returns a specially formatted response that clients can parse to display the image:
    ```local_image
    /path/to/chart.svg
    ```
    
    This format allows clients to easily detect and render the generated images.
  • Deterministic Output: Ensures identical inputs produce bit-identical SVG outputs.

Installation

Requires Python >= 3.11 and uv installed.

Local Installation (Development)

git clone <repository-url>
cd plot-mcp
uv sync

Install as a Global Tool

uv tool install .

Running the Server

Running from Source

uv run plot-mcp --output-dir ./plots

Running Remotely via GitHub (using uvx)

You can run the server directly from the GitHub repository without manual cloning:

uvx --from git+https://github.com/Nexo-Agent/plot-mcp plot-mcp --output-dir ./plots

Note: Replace the URL with the actual repository location.

CLI Configuration

The server supports the following command-line options:

  • --output-dir PATH: Directory where generated SVG files will be saved. When set, tools return the file path instead of the raw SVG content.
  • --transport [stdio|sse|streamable-http]: The communication protocol (default: stdio).
  • --port INTEGER: The port for SSE or HTTP transport (default: 8000).

Output Format

The server supports two output modes depending on whether --output-dir is configured:

Without --output-dir (Default)

Tools return a PlotOutput object containing the raw SVG content:

{
  "svg": "<svg>...</svg>",
  "width": 800,
  "height": 400,
  "viewBox": "0 0 800 400"
}

With --output-dir (Recommended)

Tools save the SVG to a file and return a specially formatted string:

```local_image
/absolute/path/to/chart.svg
```

This format is designed to be easily parsed by clients. When your client receives a response containing this pattern, it should:

  1. Detect the ```local_image marker
  2. Extract the file path
  3. Load and display the image from that path

This approach keeps the response lightweight and allows clients to handle image rendering efficiently.

See examples/local_image_format.py for a complete demonstration of how this format works.

Available Tools

The LLM can invoke the following tools:

  1. plot_line: Render continuous 2D lines.
  2. plot_scatter: Render discrete 2D points.
  3. plot_bar: Render categorical bar charts.
  4. plot_area: Render filled area under a curve.
  5. plot_histogram: Render 1D histograms.
  6. plot_box: Render box plots from raw values.
  7. plot_heatmap: Render 2D matrix as a color grid.
  8. plot_contour: Render 2D contour lines.
  9. plot_pie: Render circular pie and donut charts.

Chart Configuration

All tools accept a shared config object to customize the visual output:

{
  "title": "My Chart",
  "width": 800,
  "height": 400,
  "margin": { "top": 40, "right": 20, "bottom": 40, "left": 50 },
  "x_axis": { "label": "X Axis", "scale": "linear" },
  "y_axis": { "label": "Y Axis", "scale": "log" }
}

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选