PM Counter Monitoring MCP Server

PM Counter Monitoring MCP Server

Enables monitoring and querying of telecom performance management (PM) counters from remote SFTP locations, providing access to interface statistics, CPU/memory utilization, BGP peer data, and system metrics through a conversational interface.

Category
访问服务器

README

PM Counter Monitoring System

A comprehensive system for monitoring telecom performance monitoring (PM) counters from remote SFTP locations, storing them in a time-series database, and providing access through API endpoints and a Streamlit chat interface.

Architecture

Remote SFTP Location → Job Server (periodic fetch) → PostgreSQL Database
                                                           ↓
                                    MCP Server ← API Endpoints ← Streamlit Frontend

Components

  1. SFTP Client (sftp_client.py) - Handles file downloads from remote SFTP server
  2. Job Server (job_server.py) - Periodically fetches and processes XML files
  3. XML Parser (xml_parser.py) - Parses PM counter XML files
  4. Database (database.py) - PostgreSQL schema and models
  5. Data Storage (data_storage.py) - Saves parsed data to database
  6. API Server (api_server.py) - FastAPI REST endpoints
  7. MCP Server (mcp_server.py) - Model Context Protocol server
  8. Streamlit Frontend (streamlit_app.py) - Chat bot interface

Quick Start with Docker (Recommended)

The easiest way to run the entire system is using Docker Compose:

Step 1: Create Environment File

Create a .env file in the project root with your configuration:

# Copy the example file
cp .env.example .env

# Edit .env and add your Groq API key (required for RAG system)
# Get your API key from: https://console.groq.com/

The .env file should include at minimum:

GROQ_API_KEY=your_groq_api_key_here

Note: The Groq API key is required for the RAG (Retrieval Augmented Generation) system to work. Without it, the system will fall back to simple pattern matching.

Step 2: Build and Start Services

# Build and start all services
make build
make up

# Or using docker-compose directly
docker-compose up -d

# Initialize database schema
make init-db

# View logs
make logs

# Access the application
# - Streamlit: http://localhost:8501
# - API: http://localhost:8000
# - MCP Server: http://localhost:8001

The Docker setup includes:

  • PostgreSQL database
  • SFTP server (for testing, with example XML files)
  • Job server (fetches files every hour)
  • API server
  • MCP server
  • Streamlit frontend

All services are automatically configured to work together.

Manual Setup (Without Docker)

1. Install Dependencies

pip install -r requirements.txt

2. Configure Environment

Copy .env.example to .env and update with your settings:

cp .env.example .env

Edit .env with your database, SFTP credentials, and Groq API key:

# Required for RAG system
GROQ_API_KEY=your_groq_api_key_here

# Database settings
DB_NAME=pm_counters_db
DB_USER=postgres
DB_PASSWORD=postgres

# SFTP settings
SFTP_HOST=localhost
SFTP_USERNAME=sftp_user
SFTP_PASSWORD=sftp_password

Get your Groq API key: Visit https://console.groq.com/ to create an account and generate an API key.

3. Setup Remote Location (SFTP Server)

The remote location is where your XML files are stored. You have several options:

Option A: Use Local Files for Testing (Easiest)

# Process local XML files directly (no SFTP needed)
python test_local_files.py

Option B: Set Up Local SFTP Server See SETUP_REMOTE.md for detailed instructions on setting up a local SFTP server.

Option C: Use Existing Remote SFTP Server Update .env with your remote SFTP server credentials:

SFTP_HOST=your-sftp-server.com
SFTP_USERNAME=your_username
SFTP_PASSWORD=your_password
SFTP_REMOTE_PATH=/path/to/xml/files

For more details, see SETUP_REMOTE.md.

4. Setup PostgreSQL Database

# Create database
createdb pm_counters_db

# Or using psql
psql -U postgres -c "CREATE DATABASE pm_counters_db;"

5. Initialize Database Schema

from database import init_db
init_db()

Or run:

python -c "from database import init_db; init_db()"

Running the System

With Docker (Recommended)

# Start all services
make up

# Or
docker-compose up -d

# View logs
make logs

# Stop all services
make down

Without Docker

1. Start Job Server

The job server fetches files from SFTP at configured intervals:

python job_server.py

2. Start API Server

python api_server.py

Or using uvicorn:

uvicorn api_server:app --host 0.0.0.0 --port 8000

3. Start MCP Server

python mcp_server.py

Or using uvicorn:

uvicorn mcp_server:app --host 0.0.0.0 --port 8001

4. Start Streamlit Frontend

streamlit run streamlit_app.py

Docker Commands

Use the Makefile for convenient commands:

make build          # Build Docker images
make up             # Start all services
make down           # Stop all services
make restart        # Restart all services
make logs           # View logs from all services
make logs-job       # View logs from job server only
make logs-api       # View logs from API server only
make logs-streamlit # View logs from Streamlit only
make clean          # Stop and remove everything (including volumes)
make init-db        # Initialize database schema
make ps             # Show running containers
make shell-api      # Open shell in API server container
make shell-job      # Open shell in job server container

Or use docker-compose directly:

docker-compose up -d              # Start services
docker-compose down               # Stop services
docker-compose logs -f            # View logs
docker-compose exec api_server bash  # Open shell

Configuration

Changing Fetch Interval

The fetch interval can be configured in two ways:

  1. Environment Variable: Set FETCH_INTERVAL_HOURS in .env file (for Docker) or environment
  2. Docker Compose: Update FETCH_INTERVAL_HOURS in docker-compose.yml or .env file

For Docker, update the environment variable and restart the job server:

# Edit .env file
FETCH_INTERVAL_HOURS=2.0

# Restart job server
docker-compose restart job_server

For non-Docker, update Config.FETCH_INTERVAL_HOURS in config.py or set environment variable.

API Endpoints

Main API (Port 8000)

  • GET / - API information
  • GET /network-elements - List all network elements
  • GET /interfaces/{interface_name}/counters - Get interface counters
  • GET /system/counters - Get system counters
  • GET /cpu/utilization - Get CPU utilization
  • GET /memory/utilization - Get memory utilization
  • GET /bgp/peers - List BGP peers
  • GET /bgp/peers/{peer_address}/counters - Get BGP peer counters
  • GET /files/processed - List processed files
  • GET /stats/summary - Get summary statistics

MCP Server (Port 8001)

  • POST /mcp - MCP protocol endpoint
  • GET /mcp/methods - List available MCP methods

MCP Methods:

  • get_interface_counters - Get interface counters
  • get_system_counters - Get system counters
  • get_cpu_utilization - Get CPU utilization
  • get_memory_utilization - Get memory utilization
  • get_latest_metrics - Get latest metrics summary

Streamlit Chat Interface

The Streamlit frontend provides a chat bot interface where you can ask questions like:

  • "What is the current CPU utilization?"
  • "Show me memory usage for the last 12 hours"
  • "Get interface counters for GigabitEthernet1/0/1"
  • "What are the latest metrics?"
  • "Show me system statistics"

Database Schema

The system stores data in the following tables:

  • file_records - Track downloaded XML files
  • network_elements - Network element information
  • measurement_intervals - Time intervals for measurements
  • interface_counters - Interface performance counters
  • ip_counters - IP layer counters
  • tcp_counters - TCP layer counters
  • system_counters - System performance counters
  • bgp_counters - BGP peer counters
  • threshold_alerts - Threshold alerts from XML files

Testing with Local Files

For testing without a real SFTP server, you can:

  1. Use the existing example_1.xml and example_2.xml files
  2. Modify the job server to process local files directly
  3. Use a local SFTP server like openssh-server for testing

Troubleshooting

  1. Database Connection Issues: Ensure PostgreSQL is running and credentials are correct
  2. SFTP Connection Issues: Verify SFTP server is accessible and credentials are correct
  3. API Not Responding: Check if services are running on correct ports
  4. No Data: Ensure job server has processed files and data is in the database

License

MIT License

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选