Podman MCP Server
Enables AI tools to manage containerized applications through Podman, supporting container lifecycle operations, command execution, log viewing, image management, and resource monitoring. Features automatic network discovery for seamless integration with MCP Discovery Hub.
README
Podman MCP Server
Container management made accessible through the Model Context Protocol.
Overview
The Podman MCP Server exposes container management capabilities through MCP, allowing AI tools and applications to:
- List and inspect running containers
- Start, stop, and restart containers
- Execute commands inside containers
- View container logs
- Manage container images
- Monitor container resource usage
Designed for seamless integration with the MCP Discovery Hub for automatic network discovery.
Features
Container Management
- List containers: View all running or stopped containers
- Container info: Inspect detailed container information
- Start/Stop/Restart: Control container lifecycle
- Execute commands: Run commands inside containers
- View logs: Access container logs with configurable line count
- Resource stats: Monitor CPU, memory, and I/O usage
Image Management
- List images: View all available container images
- Pull images: Download images from registries
Network Discovery
- Automatic broadcasting: Announces itself on the network via multicast
- Zero-configuration: No manual registration needed
- Multi-transport support: Works with HTTP and streamable-http
Installation
Prerequisites
- Python 3.10+
- Podman installed and running
uvpackage manager (orpip)
Setup
# Clone or navigate to project
cd podman-mcp-server
# Install dependencies
uv sync
# Or with pip:
pip install -r requirements.txt
Configuration
Environment Variables
# Transport mode
MCP_TRANSPORT=http # http, streamable-http, or stdio (default)
# Server settings
MCP_HOST=0.0.0.0 # Binding host
MCP_PORT=3001 # Server port
MCP_SERVER_NAME=Podman MCP Server # Display name
# Broadcasting (for MCP Discovery Hub)
MCP_ENABLE_BROADCAST=true # Enable/disable broadcasting
MCP_BROADCAST_INTERVAL=30 # Seconds between announcements
.env File
Create a .env file in the project root:
MCP_TRANSPORT=http
MCP_PORT=3001
MCP_SERVER_NAME=Podman MCP Server
MCP_ENABLE_BROADCAST=true
MCP_BROADCAST_INTERVAL=30
Usage
Start in HTTP Mode (with broadcasting)
# Using environment variables
MCP_TRANSPORT=http MCP_PORT=3001 uv run main.py
# Or with .env file
uv run main.py
Start in Streamable-HTTP Mode
MCP_TRANSPORT=streamable-http MCP_PORT=3001 uv run main.py
Start in Stdio Mode (for Claude)
# Default mode, works with Claude Desktop
uv run main.py
Available Tools
Containers
List Containers
list_containers(all: bool = False)
List running containers (or all if all=true)
Example:
{
"method": "tools/call",
"params": {
"name": "list_containers",
"arguments": { "all": true }
}
}
Container Info
container_info(container: str)
Get detailed information about a specific container
Start Container
start_container(container: str)
Start a stopped container
Stop Container
stop_container(container: str, timeout: int = 10)
Stop a running container (gracefully, with timeout in seconds)
Restart Container
restart_container(container: str)
Restart a container
Container Logs
container_logs(container: str, tail: int = 100)
Get logs from a container (last N lines)
Run Container
run_container(
image: str,
name: str = None,
detach: bool = True,
ports: List[str] = [],
env: List[str] = [],
volumes: List[str] = []
)
Run a new container
Example:
{
"method": "tools/call",
"params": {
"name": "run_container",
"arguments": {
"image": "nginx:latest",
"name": "my-webserver",
"ports": ["8080:80"],
"detach": true
}
}
}
Remove Container
remove_container(container: str, force: bool = False)
Remove a container (force if running)
Exec in Container
exec_container(container: str, command: List[str])
Execute a command inside a container
Container Stats
container_stats(container: str = None, no_stream: bool = True)
Get resource usage statistics for containers
Images
List Images
list_images(all: bool = False)
List available container images
Pull Image
pull_image(image: str)
Pull/download an image from a registry
Integration with MCP Discovery Hub
Automatic Discovery
When broadcasting is enabled, this server automatically registers with the MCP Discovery Hub:
- Server broadcasts: Every 30 seconds, announces itself on
239.255.255.250:5353 - Hub discovers: Discovery hub receives announcement and probes the server
- Tools registered: All 12 container management tools become available network-wide
Manual Registration
If running without broadcasting:
# Scan for the server manually
curl -X POST http://localhost:8000/scan \
-H "Content-Type: application/json" \
-d '{"ports": [3001]}'
API Endpoints (When in HTTP Mode)
GET /
Server info endpoint
curl http://localhost:3001/
Response:
{
"name": "Podman MCP Server",
"version": "1.0.0",
"protocol": "MCP Streamable HTTP",
"endpoint": "/mcp"
}
POST /mcp
MCP protocol endpoint
All MCP communication happens here (initialize, tools/list, tools/call)
Use Cases
1. Container Orchestration
Use with AI tools to manage containerized applications:
"User: Start a new web server and configure it"
AI: I'll start an nginx container for you...
→ calls run_container(image="nginx", name="webserver", ports=["8080:80"])
2. Monitoring and Debugging
Check container status and logs:
"User: What's the status of my database container?"
AI: Let me check the logs and stats...
→ calls container_logs(container="postgres", tail=50)
→ calls container_stats(container="postgres")
3. Multi-Server Management
Deploy and manage containers across multiple hosts:
Host 1: Podman MCP Server (port 3001)
Host 2: Podman MCP Server (port 3001)
Host 3: MCP Discovery Hub (port 8000)
↓
All containers managed from single AI interface
4. Development Workflows
Quickly spin up development environments:
"User: Set up a development database for testing"
AI: I'll create a PostgreSQL container for you...
→ calls run_container(
image="postgres:15",
name="dev-db",
env=["POSTGRES_PASSWORD=devpass"]
)
Logs
Server logs are written to podman_mcp.log:
# View logs
tail -f podman_mcp.log
# Check for errors
grep ERROR podman_mcp.log
Troubleshooting
Port Already in Use
# Use a different port
MCP_PORT=3002 uv run main.py
Broadcasting Not Working
Check multicast connectivity:
# Verify multicast is enabled
ip route show
# Check firewall
sudo firewall-cmd --add-service=mdns --permanent
Podman Connection Error
Ensure Podman is running:
# Start Podman service
systemctl start podman
# Verify connection
podman ps
Performance Considerations
- Container operations: Most operations complete within 100-500ms
- Log retrieval: Depends on log size and network speed
- Broadcasting overhead: Minimal (30-byte UDP packets every 30 seconds)
- Connection pooling: Configured with pool_size=5 for efficiency
Security
Best Practices
- Run in isolated networks: Deploy in trusted network environments
- Use firewall rules: Restrict access to the MCP port
- Disable broadcasting in untrusted networks: Set
MCP_ENABLE_BROADCAST=false - Monitor logs: Regularly check for unauthorized access attempts
Limitations
- No built-in authentication (rely on network security)
- No resource quotas (AI can run unlimited containers)
- Commands run with same privileges as Podman daemon
Consider adding a reverse proxy with authentication for production use.
Requirements
- Python 3.10+
- FastAPI
- SQLAlchemy
- FastMCP
- python-dotenv
Contributing
Improvements welcome! Areas for enhancement:
- Container networking configuration
- Image building and pushing
- Volume management
- Container health monitoring
- Network performance metrics
License
MIT License - See LICENSE file for details
Support
- Issues: Report on GitHub
- Documentation: See MCP Discovery Hub wiki
- Examples: Check examples/ directory
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。