Pokémon MCP Server
Enables AI models to access comprehensive Pokémon data from PokéAPI and simulate battles between any two Pokémon with realistic mechanics including type effectiveness, stat-based damage calculations, and status effects.
README
Pokémon MCP Server — Data Resource + Battle Simulation Tool
Overview
This project implements an MCP (Model Context Protocol) server that provides AI models with access to two key capabilities:
1- Pokémon Data Resource – a resource that exposes comprehensive Pokémon data from the public PokéAPI ( https://pokeapi.co/ ).
2- Battle Simulation Tool – a tool that simulates battles between any two Pokémon, including type effectiveness, stats-based damage, turn order, and basic status effects.
This server acts as a bridge between AI and the Pokémon world, enabling LLMs to both retrieve knowledge and interactively simulate battles.
Part 1: Pokémon Data Resource
Implementation
-
Connects to the public PokéAPI ( https://pokeapi.co/ )
-
Exposes comprehensive Pokémon information including:
-
Base stats: HP, Attack, Defense, Special Attack, Special Defense, Speed
-
Types (e.g., Fire, Water, Grass)
-
Abilities
-
Available moves and their effects (power, accuracy, type, effect text)
-
Evolution information
MCP Resource
- Resource: pokemon://{name}
- Returns JSON including stats, types, abilities, moves (with effects), and evolution chain.
- Implements MCP resource design patterns to make this data accessible to LLMs.
Deliverables
- Code for the MCP server with the Pokémon data resource.
- Documentation (this README) describing how the resource exposes data.
- Example queries (examples/llm_examples.md).
Part 2: Battle Simulation Tool
Implementation
-
Tool: simulate_battle(pokemon_a, pokemon_b, max_turns=100, seed=None)
-
Simulates a battle between any two Pokémon using:
-
Type effectiveness calculations (e.g., Water > Fire)
-
Damage calculations based on stats and move power
-
Turn order based on Speed stat
Status effects:
- Paralysis – chance to skip a turn
- Burn – recurring HP loss
- Poison – recurring HP loss
- Detailed battle logs showing each turn’s actions and outcomes
- Winner determination (first Pokémon to faint, or higher HP after max turns)
MCP Tool
- Exposed via MCP as a callable tool: simulate_battle
- Returns JSON object, e.g.:
{
"winner": "blastoise",
"log": [
"--- Turn 1 ---",
"charizard used fire-punch → blastoise lost 14 HP!",
"blastoise is now affected by burn!",
...
]
}
Deliverables
- Code for the battle simulation tool following MCP tool specification
- Example usage in examples/llm_examples.md
Project Packaging
The submission includes a ZIP file containing:
- All code (pkmon_core/server.py, pkmon_core/battle.py)
- Supporting files (requirements.txt, README.md, examples/)
- A test script (test_part1.py)
- Clear instructions for setup and usage
Installation & Setup
Requirements
- Python 3.10+
- Virtual environment recommended
Setup
git clone https://github.com/TaifAlsadoon/pokemon-mcp-server.git
cd pokemon-mcp-server
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
Running & Testing
Run the MCP Server
python -m pkmon_core.server
Note: The server runs in stdio mode and will appear idle, waiting for an MCP client. Stop with Ctrl+C.
Quick Python Tests
python - << 'PY'
from pkmon_core.server import get_pokemon, simulate_battle
print("Resource sample (pikachu) ->")
print(get_pokemon("pikachu")[:200], "...\n")
print("Battle sample ->")
res = simulate_battle("charizard", "blastoise", seed=42, max_turns=20)
print("Winner:", res["winner"])
print("\n".join(res["log"][:10]))
PY
Expected output:
- JSON data for Pikachu (types, stats, moves, evolution chain)
- Battle log with turn-by-turn actions and a winner (e.g., Blastoise)
Examples for LLM Usage
See examples/llm_examples.md for prompt examples, such as:
- Summarizing a Pokémon’s stats, moves, and evolution
- Simulating a battle and explaining why the winner won
See examples/llm_examples.md for prompt examples.
Notes
- Simplified mechanics: ignores PP, items, weather, etc.
- Focused on clarity and educational battle simulation
- Easily extensible to add more mechanics
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。