Pokemon Showdown MCP Server

Pokemon Showdown MCP Server

Provides Pokemon Showdown competitive battle data to AI assistants, enabling lookup of Pokemon stats, moves, abilities, items, type matchups, and strategic information through natural language queries.

Category
访问服务器

README

mcpkmn-showdown

PyPI version License: MIT Python 3.10+ MCP

An MCP server that gives AI assistants complete knowledge of competitive Pokemon.

Give Claude (or any MCP-compatible LLM) instant access to Pokemon stats, moves, abilities, items, and type matchups—no API keys, no rate limits, works offline.

Claude Desktop using mcpkmn-showdown


Why This Exists

Without this MCP server, getting accurate Pokemon battle data into an LLM is painful:

  • Hallucination city — LLMs frequently make up stats, forget abilities, or miscalculate type matchups
  • No structured data — You're stuck copy-pasting from Bulbapedia or Serebii
  • Can't build agents — No programmatic way for an AI to query battle mechanics

With mcpkmn-showdown:

  • Zero hallucination — Data comes directly from Pokemon Showdown, the competitive standard
  • Structured responses — Tools return formatted data ready for reasoning
  • Agent-ready — Build bots that analyze replays, suggest teams, or play battles

Quickstart (5 minutes)

1. Install

pip install mcpkmn-showdown

2. Configure Claude Desktop

Add to your config file:

OS Path
macOS ~/Library/Application Support/Claude/claude_desktop_config.json
Windows %APPDATA%\Claude\claude_desktop_config.json
{
  "mcpServers": {
    "pokemon": {
      "command": "mcpkmn-showdown"
    }
  }
}

3. Restart Claude Desktop

4. Try it

Ask Claude: "What's the best ability for Garchomp and why?"


What You Can Do

Here are concrete workflows this MCP enables:

Workflow Example Prompt
Team Analysis "Analyze this team's type coverage and suggest improvements"
Matchup Calc "Is Choice Scarf Garchomp fast enough to outspeed Dragapult?"
Set Building "Build a Trick Room sweeper that can handle Fairy types"
Replay Analysis "What went wrong in this battle? [paste replay log]"
Learning "Explain how Intimidate affects damage calculations"

API Reference

Tools Overview

Tool Purpose Key Input
get_pokemon Pokemon stats, types, abilities name: string
get_move Move power, accuracy, effects name: string
get_ability What an ability does in battle name: string
get_item Held item effects name: string
get_type_effectiveness Damage multiplier calculation attack_type, defend_types
search_priority_moves Find priority moves min_priority: int
search_pokemon_by_ability Pokemon with a specific ability ability: string
list_dangerous_abilities Battle-critical abilities by category category: string

get_pokemon

Look up complete Pokemon data.

Schema:

{
  "name": "string" // Pokemon name (e.g., "garchomp", "Mega Charizard X")
}

Example:

Input:  {"name": "garchomp"}
Output:
  Garchomp
  Types: Ground/Dragon
  Stats: HP 108 | Atk 130 | Def 95 | SpA 80 | SpD 85 | Spe 102
  Abilities: Sand Veil / Rough Skin (Hidden)
  Weight: 95 kg
  Tier: OU

get_move

Look up move details including effects and priority.

Schema:

{
  "name": "string" // Move name (e.g., "earthquake", "swords-dance")
}

Example:

Input:  {"name": "earthquake"}
Output:
  Earthquake
  Type: Ground | Category: Physical
  Power: 100 | Accuracy: 100%
  PP: 10 | Priority: 0
  Effect: Hits all adjacent Pokemon. Double damage on Dig.

get_ability

Look up what an ability does in battle.

Schema:

{
  "name": "string" // Ability name (e.g., "levitate", "protean")
}

Example:

Input:  {"name": "protean"}
Output:
  Protean: This Pokemon's type changes to match the type of the move
  it is about to use. This effect comes after all effects that change
  a move's type.

get_item

Look up held item battle effects.

Schema:

{
  "name": "string" // Item name (e.g., "choice-scarf", "leftovers")
}

Example:

Input:  {"name": "choice-scarf"}
Output:
  Choice Scarf: Holder's Speed is 1.5x, but it can only use the first
  move it selects.

get_type_effectiveness

Calculate type matchup multipliers.

Schema:

{
  "attack_type": "string", // Attacking type (e.g., "electric")
  "defend_types": ["string"] // Defending types (e.g., ["water", "flying"])
}

Example:

Input:  {"attack_type": "electric", "defend_types": ["water", "flying"]}
Output: 4x - Super effective!

search_priority_moves

Find moves that act before normal speed order.

Schema:

{
  "min_priority": 1 // Minimum priority level (default: 1)
}

Example:

Input:  {"min_priority": 1}
Output:
  +1 Priority: Aqua Jet, Bullet Punch, Ice Shard, Mach Punch,
               Quick Attack, Shadow Sneak, Sucker Punch...
  +2 Priority: Extreme Speed, Feint...
  +3 Priority: Fake Out...

search_pokemon_by_ability

Find all Pokemon with a specific ability.

Schema:

{
  "ability": "string" // Ability name (e.g., "intimidate")
}

Example:

Input:  {"ability": "levitate"}
Output: Azelf, Bronzong, Cresselia, Eelektross, Flygon, Gengar,
        Hydreigon, Latias, Latios, Mismagius, Rotom, Uxie, Vikavolt...

list_dangerous_abilities

List abilities that significantly impact battle outcomes.

Schema:

{
  "category": "string" // One of: immunity, defense, reflect, offense,
  // priority, contact, or "all"
}

Categories:

  • immunity — Levitate, Flash Fire, Volt Absorb, Water Absorb, etc.
  • defense — Multiscale, Fur Coat, Fluffy, Marvel Scale, etc.
  • reflect — Magic Bounce
  • offense — Huge Power, Pure Power, Gorilla Tactics, etc.
  • priority — Prankster, Gale Wings
  • contact — Rough Skin, Iron Barbs, Flame Body, Static, etc.

Architecture

┌─────────────────┐     ┌─────────────────────┐     ┌──────────────────┐
│                 │     │                     │     │                  │
│  Claude/LLM     │────▶│  mcpkmn-showdown    │────▶│  Local JSON      │
│                 │ MCP │  (MCP Server)       │     │  Cache           │
│                 │◀────│                     │◀────│                  │
└─────────────────┘     └─────────────────────┘     └──────────────────┘
                                                            │
                                                            │ (manual update)
                                                            ▼
                                                    ┌──────────────────┐
                                                    │  Pokemon         │
                                                    │  Showdown        │
                                                    │  Data Files      │
                                                    └──────────────────┘

Why MCP?

LLMs hallucinate Pokemon data — wrong stats, forgotten abilities, botched type calculations. MCP tools let the model query authoritative data instead of guessing from training.

Why local JSON instead of connecting to Pokemon Showdown?

Pokemon Showdown doesn't have a REST API. Their data is served as minified JavaScript for their web client. Connecting live would mean parsing JS on every query, network latency, rate limiting concerns, and breaking if they change formats.

Approach Tradeoff
Local JSON Instant, offline, reliable — but data can go stale
Live connection Always fresh — but slow, fragile, requires internet

For reference data (stats, moves, abilities), local is the right call. The data only changes with new games/DLC. For live features (ladder stats, ongoing battles), we'd need WebSocket connections — that's on the roadmap.

Data sources (from Pokemon Showdown):

  • pokedex.json — 1,500+ Pokemon with stats, types, abilities
  • moves_showdown.json — 950+ moves with effects
  • abilities_full.json — 300+ abilities with descriptions
  • items.json — 580+ items with effects
  • typechart.json — Complete type effectiveness matrix

To refresh the data: python -m mcpkmn_showdown.data_fetcher


Safety & Limits

Concern How It's Handled
Rate limits None — all data is local, no external API calls
Data freshness Ships with latest Showdown data; manually updateable
Input validation Names normalized and validated before lookup
Error handling Returns helpful "not found" messages, never crashes
Credential handling No credentials needed, no auth, no API keys

Roadmap

Planned features:

  • [ ] Live battle integration (connect to a running Showdown battle)
  • [ ] Team import/export (paste Showdown format, get structured data)
  • [ ] Damage calculator integration
  • [ ] Format-specific tier lists and banlists
  • [ ] Usage statistics from Smogon

Help wanted — good first issues:

  • [ ] Add get_format tool to explain format rules (OU, UU, etc.)
  • [ ] Add search_pokemon_by_type tool
  • [ ] Add search_moves_by_type tool
  • [ ] Improve form normalization (regional forms, Gigantamax, etc.)
  • [ ] Add more test coverage

See CONTRIBUTING.md for how to get started.


Contributing

See CONTRIBUTING.md for full guidelines. Quick start:

git clone https://github.com/drewsungg/mcpkmn-showdown.git
cd mcpkmn-showdown
pip install -e ".[dev]"
pytest                    # Run tests
npx @modelcontextprotocol/inspector mcpkmn-showdown  # Interactive testing

MCP Inspector


We Want Your Feedback

If you try this out, please let us know:

  1. Is the tool naming/schema intuitive for an agent? Would different boundaries help?
  2. What's missing for your use case? Teambuilding? Laddering? Replay analysis? Eval harness?
  3. Any security/abuse concerns? Anything that could be misused?
  4. Does it behave well under load? Concurrent requests? Long sessions?

Open an issue or reach out: @drewsungg


Related Projects


License

MIT License — see LICENSE for details.

Author

Andrew Sung@drewsungg

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选