PolicyGuard
Provides policy-based access control, incident tracking, and compliance monitoring to govern AI agent behavior. It enables organizations to enforce security rules and maintain audit trails by validating agent actions against trust levels and pattern-based policies.
README
PolicyGuard
Security & Governance MCP Server for AI Agents
PolicyGuard is an MCP (Model Context Protocol) server that provides policy-based access control, incident tracking, and compliance monitoring for AI agents.
Built for MCP_HACK//26 hackathon - "MCP & AI Agents Starter Track" and "Secure & Govern MCP" categories.
Note: This project demonstrates working integration with kagent (AI agent platform) and can be extended with kgateway (API gateway) for additional network-level security.
Table of Contents
- Overview
- Features
- Architecture
- MCP Tools
- Quick Start
- Kubernetes Deployment
- Testing
- kagent Integration
- Security Model
- Project Structure
- License
Overview
As AI agents become more autonomous, organizations need controls to govern their behavior. PolicyGuard is my first MCP server project - built to explore how security and governance can be implemented at the MCP layer.
The Problem
AI agents can call any tool they have access to. Without governance:
- Agents might perform destructive operations
- No audit trail of agent actions
- No way to enforce security policies
- No visibility into compliance
The Solution
PolicyGuard adds a security layer that agents call before taking action:
User Request → AI Agent → PolicyGuard (validate_action) → Allowed/Denied
Features
| Feature | Description |
|---|---|
| Policy Enforcement | Validate actions against security rules |
| Trust Levels | low, medium, high, admin hierarchy |
| Pattern Matching | Wildcard patterns like delete_*, *_production |
| Auto-Registration | Unknown agents get minimal trust |
| Incident Tracking | Automatic violation logging |
| Audit Trail | Complete action history |
| Compliance Dashboard | Security metrics at a glance |
Architecture
┌─────────────────────────────────────────────────────────────────┐
│ AI Agent / LLM │
│ │
│ "Before any action, call validate_action to check permission" │
└─────────────────────────────────────────────────────────────────┘
│
│ MCP Protocol
▼
┌─────────────────────────────────────────────────────────────────┐
│ PolicyGuard MCP Server │
│ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ validate │ │ create │ │ report │ │
│ │ action │ │ policy │ │ incident │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ register │ │ get_audit │ │ get │ │
│ │ agent │ │ log │ │ compliance │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌───────────────────┐
│ JSON Storage │
│ (policies, │
│ agents, │
│ audit_log, │
│ incidents) │
└───────────────────┘
MCP Tools
PolicyGuard exposes 6 tools via MCP:
1. validate_action ⭐ Primary Tool
Check if an action is allowed before executing it.
{
"action_type": "tool_call",
"target": "delete_records",
"agent_id": "my-agent"
}
Response:
{
"action_id": "act_a1b2c3d4e5f6",
"allowed": false,
"reason": "Delete operations require admin trust level"
}
2. register_agent
Register an agent with a trust level.
{
"agent_id": "data-processor",
"name": "Data Agent",
"trust_level": "medium"
}
3. create_policy
Create security rules.
{
"policy_id": "block-deletes",
"name": "Block Deletes",
"rules": "[{\"condition\": {\"tool_pattern\": \"delete_*\"}, \"action\": \"deny\"}]"
}
4. get_audit_log
Query action history.
5. get_compliance_status
Get security dashboard metrics.
6. report_incident
Manually report security incidents.
Quick Start
Prerequisites
- Python 3.10+
- pip
Local Installation
# Clone
git clone https://github.com/PrateekKumar1709/policyguard.git
cd policyguard
# Setup
python3 -m venv .venv
source .venv/bin/activate
pip install -e .
# Run
python src/main.py
Test the Tools
import json
from src.tools.validate_action import validate_action
from src.tools.register_agent import register_agent
# Register an agent
result = json.loads(register_agent.fn(
agent_id="test-agent",
name="Test Agent",
trust_level="medium"
))
print(f"Registered: {result['agent_id']}")
# Validate an action
result = json.loads(validate_action.fn(
action_type="tool_call",
target="read_data",
agent_id="test-agent"
))
print(f"Allowed: {result['allowed']}")
HTTP Mode
python src/main.py --transport http --port 8000
Kubernetes Deployment
PolicyGuard includes a Helm chart for Kubernetes deployment.
Using Kind
# Create cluster
kind create cluster --name policyguard
# Build and load image
docker build -t policyguard:latest .
kind load docker-image policyguard:latest --name policyguard
# Deploy
kubectl create namespace policyguard
helm install policyguard ./helm/policyguard -n policyguard
# Verify
kubectl get pods -n policyguard
Port Forward
kubectl port-forward -n policyguard svc/policyguard 8000:8000
Testing
Unit Tests
pytest tests/ -v
Test Results
tests/test_tools.py::TestValidateAction::test_allow_read_for_low_trust PASSED
tests/test_tools.py::TestValidateAction::test_deny_delete_for_low_trust PASSED
tests/test_tools.py::TestValidateAction::test_allow_delete_for_admin PASSED
tests/test_tools.py::TestValidateAction::test_deny_suspended_agent PASSED
tests/test_tools.py::TestRegisterAgent::test_register_new_agent PASSED
tests/test_tools.py::TestCreatePolicy::test_create_valid_policy PASSED
... (16 tests total)
============================== 16 passed ==============================
E2E Test Output
[1/6] register_agent ✅ SUCCESS
[2/6] create_policy ✅ SUCCESS
[3/6] validate_action ✅ ALLOWED (read_data)
[4/6] validate_action ✅ DENIED (delete_records)
[5/6] report_incident ✅ SUCCESS
[6/6] get_compliance_status ✅ SUCCESS
ALL 6 MCP TOOLS WORKING!
kagent Integration
PolicyGuard integrates with kagent for Kubernetes-native AI agent management.
Screenshots
Agent List - PolicyGuard agent registered and ready:

Agent Tools - 6 PolicyGuard MCP tools available:

Compliance Dashboard - Asking for compliance status:

Policy Validation - Action denied based on policy:

Quick Setup
# 1. Install kagent CRDs
helm install kagent-crds ./kagent-reference/helm/kagent-crds -n kagent --create-namespace
# 2. Install kagent with Ollama (free local LLM)
helm upgrade --install kagent ./kagent-reference/helm/kagent -n kagent \
--set providers.default=ollama \
--set providers.ollama.model=qwen2.5:1.5b \
--set tag=0.7.13
# 3. Deploy PolicyGuard
helm install policyguard ./helm/policyguard -n policyguard --create-namespace
# 4. Create RemoteMCPServer
kubectl apply -f - <<EOF
apiVersion: kagent.dev/v1alpha2
kind: RemoteMCPServer
metadata:
name: policyguard
namespace: kagent
spec:
protocol: STREAMABLE_HTTP
url: http://policyguard.policyguard:8000/mcp
timeout: 30s
EOF
# 5. Create PolicyGuard Agent
kubectl apply -f - <<EOF
apiVersion: kagent.dev/v1alpha2
kind: Agent
metadata:
name: policyguard-agent
namespace: kagent
spec:
description: "Security agent using PolicyGuard"
type: Declarative
declarative:
modelConfig: "default-model-config"
systemMessage: |
You are a PolicyGuard Security Agent. Use the PolicyGuard tools to:
- validate_action: Check if actions are allowed
- register_agent: Register new agents
- create_policy: Define security rules
- get_compliance_status: View compliance dashboard
tools:
- type: McpServer
mcpServer:
name: policyguard
kind: RemoteMCPServer
apiGroup: kagent.dev
toolNames:
- validate_action
- register_agent
- create_policy
- get_audit_log
- get_compliance_status
- report_incident
EOF
Verified Working
# Check status
$ kubectl get agents,remotemcpservers -n kagent
NAME TYPE READY ACCEPTED
policyguard-agent Declarative True True
NAME PROTOCOL URL ACCEPTED
policyguard STREAMABLE_HTTP http://policyguard.policyguard:8000/mcp True
# Invoke agent via CLI
$ kagent invoke -t "Get compliance status" --agent policyguard-agent
Response:
- Security Posture: Healthy
- Total Policies: 1, Enabled: 1
- Total Incidents: 0
- Agents Registered: 0
# Test validation
$ kagent invoke -t "Can test-agent delete the database?" --agent policyguard-agent
Response:
The action delete_database was not allowed for test-agent.
Reason: Delete operations require admin trust level.
Access kagent UI
kubectl port-forward -n kagent svc/kagent-ui 8080:8080
# Open http://localhost:8080
Security Model
Trust Levels
| Level | Score | Use Case |
|---|---|---|
low |
1 | Unknown agents, read-only |
medium |
2 | Verified agents |
high |
3 | Trusted agents |
admin |
4 | Full access |
Policy Rules
{
"condition": {
"tool_pattern": "delete_*",
"trust_level_below": "admin"
},
"action": "deny",
"message": "Delete requires admin"
}
Evaluation Order
- Agent suspended? → DENY
- Tool in denied list? → DENY
- Tool not in allowed list? → DENY
- Policy match? → Apply rule
- Default → ALLOW
Project Structure
policyguard/
├── helm/
│ └── policyguard/ # Helm chart
│ ├── Chart.yaml
│ ├── values.yaml
│ └── templates/
├── src/
│ ├── main.py # Entry point
│ ├── core/
│ │ ├── server.py # MCP server
│ │ └── utils.py # Utilities
│ └── tools/
│ ├── validate_action.py
│ ├── register_agent.py
│ ├── create_policy.py
│ ├── get_audit_log.py
│ ├── get_compliance_status.py
│ └── report_incident.py
├── tests/
│ └── test_tools.py # 16 unit tests
├── Dockerfile
├── pyproject.toml
└── README.md
Technologies Used
- FastMCP - Python MCP server SDK
- Pydantic - Data validation
- Helm - Kubernetes packaging
- pytest - Testing
Future Improvements
- [ ] Database backend (PostgreSQL)
- [ ] Web dashboard UI
- [ ] Prometheus metrics
- [ ] RBAC integration
- [ ] Policy versioning
License
MIT License
Hackathon
MCP_HACK//26 - "MCP & AI Agents Starter Track"
This is my first MCP server project! I built PolicyGuard to learn:
- How MCP servers work
- How to expose tools to AI agents
- How to deploy MCP servers on Kubernetes
- How security/governance can be implemented at the MCP layer
What I Built
- ✅ 6 MCP tools for security governance
- ✅ Policy engine with pattern matching
- ✅ Trust level system
- ✅ Audit logging and incident tracking
- ✅ Helm chart for Kubernetes
- ✅ 16 unit tests
- ✅ kagent integration examples
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。