Pollinations Think MCP Server

Pollinations Think MCP Server

Provides advanced AI reasoning and strategic thinking capabilities using Pollinations AI API with DeepSeek models, plus real-time web search through SearchGPT for comprehensive analysis and research.

Category
访问服务器

README

🧠 Pollinations Think MCP Server

An advanced Model Context Protocol (MCP) server that provides sophisticated thinking and analysis capabilities using the Pollinations AI API with DeepSeek reasoning models.

🌟 Features

  • 🎯 Advanced Strategic Thinking: Multi-cycle analysis with contradiction detection and synthesis
  • 🔄 Flexible Model Support: DeepSeek reasoning, OpenAI reasoning, and other advanced models
  • 🛡️ Robust Error Handling: Comprehensive retry logic and graceful degradation
  • ⚙️ Configurable Parameters: Customizable thinking cycles, timeouts, and model selection
  • 📊 Health Monitoring: Built-in health checks and status monitoring
  • ☁️ Cloud Deployment Ready: Optimized for Smithery.ai deployment to resolve network issues

🛠️ Available Tools

1. think

Advanced strategic thinking and analysis using openai-reasoning model.

Parameters:

  • text (required): The topic, question, or problem to analyze
  • model (optional): AI model to use (default: openai-reasoning)
  • seed (optional): Random seed for reproducible results
  • maxCycles (optional): Maximum thinking cycles (default: 3, max: 5)

Example:

{
  "name": "think",
  "arguments": {
    "text": "Should a startup focus on growth or profitability first?",
    "maxCycles": 3
  }
}

2. search

Search the web in real-time using SearchGPT model.

Parameters:

  • query (required): The search query to find information on the web

Example:

{
  "name": "search",
  "arguments": {
    "query": "latest AI developments 2024"
  }
}

3. continue_thinking

Continue receiving the next part of a large thinking response.

Parameters: None

Example:

{
  "name": "continue_thinking",
  "arguments": {}
}

🚀 Installation

  1. Clone the repository:

    git clone <repository-url>
    cd pollinations-think-mcp
    
  2. Install dependencies:

    npm install
    
  3. Start the server:

    npm start
    

🧪 Testing

Run Basic Tests

npm test

Test Search Functionality

node test-search.js

Manual API Testing

Test the SearchGPT endpoint directly:

# PowerShell
(Invoke-WebRequest -Uri 'https://text.pollinations.ai/your query here/?model=searchgpt' -Method Get).Content

📋 API Endpoints Used

Thinking (OpenAI Reasoning)

  • URL: https://text.pollinations.ai/{prompt}/?model=openai-reasoning&token=
  • Method: GET
  • Purpose: Advanced reasoning and strategic analysis

Search (SearchGPT)

  • URL: https://text.pollinations.ai/{prompt}/?model=searchgpt&token=
  • Method: GET
  • Purpose: Real-time web search and current information retrieval

🔧 Configuration

MCP Client Setup

Add to your MCP client configuration:

{
  "mcpServers": {
    "pollinations-think": {
      "command": "node",
      "args": ["/path/to/pollinations-think-mcp/index.js"]
    }
  }
}

Environment Variables

No environment variables required - the server uses public Pollinations.ai endpoints.

📊 Response Handling

Large Response Management

  • Responses exceeding ~30KB are automatically split
  • Use continue_thinking tool to get subsequent parts
  • Continuation data is maintained across calls

Error Handling

  • Comprehensive error messages for debugging
  • Graceful fallbacks for API failures
  • Detailed logging for troubleshooting

🎯 Use Cases

Strategic Thinking

  • Business strategy development
  • Problem-solving and decision making
  • Risk assessment and mitigation planning
  • Innovation and opportunity analysis

Web Search

  • Current events and news research
  • Market research and competitive analysis
  • Technical documentation lookup
  • Real-time data verification

🔍 Example Outputs

Think Tool Response

# 🧠 Advanced Strategic Thinking Analysis

## 📋 Analysis Overview
- Topic: Should a startup focus on growth or profitability first?
- Thinking Cycles: 3
- Analysis Depth: Advanced Multi-Layer Cognitive Processing

## 🎯 Strategic Analysis
[Comprehensive strategic framework with executive summary, 
risk mitigation, success metrics, and next steps]

## 🔬 Meta-Cognitive Assessment
[Quality assessment and thinking process evaluation]

Search Tool Response

# 🔍 Web Search Results: latest AI developments 2024

## Recent AI Developments:
- [Trump plans executive orders to power AI growth](https://reuters.com/...)
- [Nvidia CES 2025 keynote highlights](https://apnews.com/...)
- [OpenAI's AGI roadmap for 2025](https://time.com/...)

[Detailed search results with sources and current information]

🛡️ Security

  • Uses public API endpoints (no authentication required)
  • No sensitive data storage
  • Input validation and sanitization
  • Safe error handling

📝 Version History

v2.0.0

  • ✅ Added real-time web search with SearchGPT
  • ✅ Enhanced thinking engine with meta-cognitive assessment
  • ✅ Improved response handling for large outputs
  • ✅ Comprehensive testing suite

v1.0.0

  • Initial release with strategic thinking capabilities
  • DeepSeek reasoning integration
  • Basic MCP server implementation

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Submit a pull request

📄 License

MIT License - see LICENSE file for details.

🙏 Acknowledgments


Made with ❤️ for the MCP community

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选