Polyagent MCP
Enables any MCP-compatible client to use existing Claude Code agents from .claude/agents/ directories. Spawns agents in separate CLI sessions for better context optimization and performance across Codex, Gemini CLI, and other AI coding assistants.
README
Polyagent MCP
MCP server that brings Claude Code agents to Codex, Gemini CLI and other AI coding assistants. Let any MCP-compatible client benefit from existing .claude/agents/ definitions, with zero additional configuration.
Why This Exists
Teams with Claude Code agents want colleagues on Codex or Gemini to reuse those same agents without porting anything. Polyagent MCP provides a zero-configuration experience for contributors using Codex or Gemini who might not have access to Claude Code, enabling the same agent-based workflows that Claude Code provides. It's designed as a drop-in feature for projects where there's already considerable thought put into designing Claude Code-optimized subagents.
How It Works
When you run this MCP server within Codex or Gemini, it spawns agents via separate CLI sessions, so they perform similarly to Claude Code agents. This provides the same benefits:
- Context optimization: The main process uses less context as agents are initialized with separate context and only pass back what's important—not all intermediary output and thinking tokens.
- Better performance: Each agent can be provided with its own knowledge and rules. Since it operates in a fresh session, this typically leads to way better prompt adherence compared to giving the same instructions to a single AI agent tasked with many responsibilities (single responsibility principle).
Installation
Quick Start with uvx (Recommended)
Run directly from GitHub without cloning:
# Default stdio transport
uvx --from git+https://github.com/execveat/polyagent-mcp polyagent-mcp
# HTTP transport on custom port
uvx --from git+https://github.com/execveat/polyagent-mcp polyagent-mcp --transport http --port 8000
Local Development
Clone and install for development:
git clone https://github.com/execveat/polyagent-mcp.git
cd polyagent-mcp
uv sync
Run locally with either:
# Using the console script
uv run polyagent-mcp
# Using fastmcp CLI (for development with auto-reload)
uv run fastmcp dev polyagent_mcp.server:mcp
Configuration
Codex
Add to your Codex configuration with a minimum 15-minute timeout:
[mcp_servers.agents]
command = "uvx"
args = ["--from", "git+https://github.com/execveat/polyagent-mcp", "polyagent-mcp"]
tool_timeout_sec = 900
For local development (if you've cloned the repo):
[mcp_servers.agents]
command = "uv"
args = ["--directory", "/path/to/polyagent-mcp", "run", "polyagent-mcp"]
tool_timeout_sec = 900
Important:
- Use
tool_timeout_sec = 900or higher. Lower timeouts will cause agent invocations to fail prematurely - The
uvxmethod automatically installs and updates from GitHub - For local development, replace
/path/to/polyagent-mcpwith your actual clone path
Gemini CLI
Add to your settings.json:
{
"mcpServers": {
"agents": {
"command": "uvx",
"args": [
"--from",
"git+https://github.com/execveat/polyagent-mcp",
"polyagent-mcp"
],
"timeout": 900000
}
}
}
For local development:
{
"mcpServers": {
"agents": {
"command": "uv",
"args": [
"--directory",
"/path/to/polyagent-mcp",
"run",
"polyagent-mcp"
],
"timeout": 900000
}
}
}
Important:
- Timeout is in milliseconds:
900000= 15 minutes - For local development, replace
/path/to/polyagent-mcpwith your actual clone path
Environment Variables
Configure via environment variables (all optional):
POLYAGENT_MCP_DIR– directory with agent Markdown files (default:.claude/agents)POLYAGENT_MCP_CONFIG– optional YAML/JSON file for runner/agent config overridesPOLYAGENT_MCP_WORKSPACE– working directory for agent executionPOLYAGENT_MCP_TIMEOUT– default timeout in seconds (default: 900)POLYAGENT_MCP_LOG_LEVEL– Python log level (default: INFO)POLYAGENT_MCP_DEBUG– enable FastMCP debug mode
Usage
Once configured, your MCP client will automatically discover all agents in .claude/agents/:
- List available agents: Check
resource://agents/manifestor use your client's tool listing - Review agent instructions: Read
agent://<agent-name>before delegating - Invoke agents: Call the tool named after the agent (e.g.,
commit-agent)
Example tool invocation:
{
"tool": "commit-agent",
"arguments": {
"task": "Review and commit the changes with an appropriate message",
"context": "Fixed authentication bug in login flow"
}
}
Optional parameters:
runner– force a specific CLI (codex,claude,gemini)model– runner-specific model aliastimeout_seconds– extend timeout for long operations
Requirements
- Python 3.10+
- At least one of:
codex,claude, orgeminiCLI installed - Existing
.claude/agents/directory with agent definitions
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。