Polybrain MCP Server
Enables AI agents to connect to and chat with multiple LLM models (OpenAI, OpenRouter, custom endpoints) with conversation history management and model switching capabilities.
README
Polybrain MCP Server
An MCP (Model Context Protocol) server for connecting AI agents to multiple LLM models. Supports conversation history, model switching, and seamless Claude Code integration.
Features
- Multi-model support (OpenAI, OpenRouter, custom endpoints)
- Conversation history management
- Switch models mid-conversation
- Extended thinking/reasoning support (configurable by provider)
- Pure MCP protocol (silent by default)
- Automatic server management
Installation
npm install -g polybrain-mcp-server
# or
pnpm add -g polybrain-mcp-server
Quick Setup
1. Configure Models
Option A: YAML (recommended)
Create ~/.polybrain.yaml:
models:
- id: "gpt-4o"
modelName: "gpt-4o"
baseUrl: "https://api.openai.com/v1"
apiKey: "${OPENAI_API_KEY}"
provider: "openai"
- id: "gpt-5.1"
modelName: "openai/gpt-5.1"
baseUrl: "https://openrouter.io/api/v1"
apiKey: "${OPENROUTER_KEY}"
provider: "openrouter"
Set env vars:
export OPENAI_API_KEY="sk-..."
export OPENROUTER_KEY="sk-or-..."
Option B: Environment variables
export POLYBRAIN_BASE_URL="https://api.openai.com/v1"
export POLYBRAIN_API_KEY="sk-..."
export POLYBRAIN_MODEL_NAME="gpt-4o"
2. Add to Claude Code
Open Claude Code settings → MCP Servers, add:
{
"mcpServers": {
"polybrain": {
"command": "polybrain"
}
}
}
Done! You can now use:
chat- Talk to any configured modellist_models- See available modelsconversation_history- Access past conversations
Configuration Reference
Environment Variables
POLYBRAIN_BASE_URL- LLM API base URLPOLYBRAIN_API_KEY- API keyPOLYBRAIN_MODEL_NAME- Model namePOLYBRAIN_HTTP_PORT- Server port (default: 32701)POLYBRAIN_LOG_LEVEL- Log level (default: info)POLYBRAIN_DEBUG- Enable debug logging to stderrPOLYBRAIN_CONFIG_PATH- Custom config file path
YAML Config Fields
httpPort: 32701 # Optional
truncateLimit: 500 # Optional
logLevel: info # Optional
models: # Required
- id: "model-id" # Internal ID
modelName: "actual-model-name" # API model name
baseUrl: "https://api.url/v1" # API endpoint
apiKey: "key or ${ENV_VAR}" # API key
provider: "openai" # Optional: provider type for reasoning support
Supported Providers
The provider field enables provider-specific features like extended thinking/reasoning. If not specified, reasoning parameters will not be passed to the API (safe default).
| Provider | Reasoning Support | Valid Values |
|---|---|---|
| OpenAI | YES | "openai" |
| OpenRouter | VARIES | "openrouter" |
Examples:
- Use
provider: "openai"for OpenAI API models (GPT-4, o-series) - Use
provider: "openrouter"for OpenRouter proxy service (supports 400+ models) - Omit
providerfield if your endpoint doesn't support reasoning parameters
Example with reasoning:
models:
- id: "gpt-o1"
modelName: "o1"
baseUrl: "https://api.openai.com/v1"
apiKey: "${OPENAI_API_KEY}"
provider: "openai" # Enables reasoning support
- id: "gpt-5.1"
modelName: "openai/gpt-5.1"
baseUrl: "https://openrouter.io/api/v1"
apiKey: "${OPENROUTER_KEY}"
provider: "openrouter" # Enables reasoning support
To use reasoning, set reasoning: true in the chat tool call. If the model and provider support it, you'll receive both the response and reasoning content.
Development
Setup
pnpm install
Build
pnpm build
Lint & Format
pnpm lint
pnpm format
Type Check
pnpm type-check
Development Mode
pnpm dev
Project Structure
src/
├── bin/polybrain.ts # CLI entry point
├── launcher.ts # Server launcher & management
├── http-server.ts # HTTP server
├── index.ts # Main server logic
├── mcp-tools.ts # MCP tool definitions
├── conversation-manager.ts
├── openai-client.ts
├── config.ts
├── logger.ts
└── types.ts
How It Works
- Launcher checks if HTTP server is running
- Starts server in background if needed
- Connects to Claude Code via stdio MCP
- Routes requests to HTTP backend
- Maintains conversation history
- Responds with MCP protocol messages
Debugging
Enable debug logs to stderr:
{
"mcpServers": {
"polybrain": {
"command": "polybrain",
"env": {
"POLYBRAIN_DEBUG": "true"
}
}
}
}
Restart Server
After changing configuration in ~/.polybrain.yaml, restart the HTTP backend server:
polybrain --restart
This kills the background HTTP server. The next time you use polybrain, it will automatically start a fresh server with the updated configuration.
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。