Polybrain MCP Server

Polybrain MCP Server

Enables AI agents to connect to and chat with multiple LLM models (OpenAI, OpenRouter, custom endpoints) with conversation history management and model switching capabilities.

Category
访问服务器

README

Polybrain MCP Server

An MCP (Model Context Protocol) server for connecting AI agents to multiple LLM models. Supports conversation history, model switching, and seamless Claude Code integration.

Features

  • Multi-model support (OpenAI, OpenRouter, custom endpoints)
  • Conversation history management
  • Switch models mid-conversation
  • Extended thinking/reasoning support (configurable by provider)
  • Pure MCP protocol (silent by default)
  • Automatic server management

Installation

npm install -g polybrain-mcp-server
# or
pnpm add -g polybrain-mcp-server

Quick Setup

1. Configure Models

Option A: YAML (recommended)

Create ~/.polybrain.yaml:

models:
  - id: "gpt-4o"
    modelName: "gpt-4o"
    baseUrl: "https://api.openai.com/v1"
    apiKey: "${OPENAI_API_KEY}"
    provider: "openai"

  - id: "gpt-5.1"
    modelName: "openai/gpt-5.1"
    baseUrl: "https://openrouter.io/api/v1"
    apiKey: "${OPENROUTER_KEY}"
    provider: "openrouter"

Set env vars:

export OPENAI_API_KEY="sk-..."
export OPENROUTER_KEY="sk-or-..."

Option B: Environment variables

export POLYBRAIN_BASE_URL="https://api.openai.com/v1"
export POLYBRAIN_API_KEY="sk-..."
export POLYBRAIN_MODEL_NAME="gpt-4o"

2. Add to Claude Code

Open Claude Code settings → MCP Servers, add:

{
  "mcpServers": {
    "polybrain": {
      "command": "polybrain"
    }
  }
}

Done! You can now use:

  • chat - Talk to any configured model
  • list_models - See available models
  • conversation_history - Access past conversations

Configuration Reference

Environment Variables

  • POLYBRAIN_BASE_URL - LLM API base URL
  • POLYBRAIN_API_KEY - API key
  • POLYBRAIN_MODEL_NAME - Model name
  • POLYBRAIN_HTTP_PORT - Server port (default: 32701)
  • POLYBRAIN_LOG_LEVEL - Log level (default: info)
  • POLYBRAIN_DEBUG - Enable debug logging to stderr
  • POLYBRAIN_CONFIG_PATH - Custom config file path

YAML Config Fields

httpPort: 32701                    # Optional
truncateLimit: 500                 # Optional
logLevel: info                      # Optional

models:                             # Required
  - id: "model-id"                 # Internal ID
    modelName: "actual-model-name"  # API model name
    baseUrl: "https://api.url/v1"  # API endpoint
    apiKey: "key or ${ENV_VAR}"    # API key
    provider: "openai"              # Optional: provider type for reasoning support

Supported Providers

The provider field enables provider-specific features like extended thinking/reasoning. If not specified, reasoning parameters will not be passed to the API (safe default).

Provider Reasoning Support Valid Values
OpenAI YES "openai"
OpenRouter VARIES "openrouter"

Examples:

  • Use provider: "openai" for OpenAI API models (GPT-4, o-series)
  • Use provider: "openrouter" for OpenRouter proxy service (supports 400+ models)
  • Omit provider field if your endpoint doesn't support reasoning parameters

Example with reasoning:

models:
  - id: "gpt-o1"
    modelName: "o1"
    baseUrl: "https://api.openai.com/v1"
    apiKey: "${OPENAI_API_KEY}"
    provider: "openai"           # Enables reasoning support

  - id: "gpt-5.1"
    modelName: "openai/gpt-5.1"
    baseUrl: "https://openrouter.io/api/v1"
    apiKey: "${OPENROUTER_KEY}"
    provider: "openrouter"       # Enables reasoning support

To use reasoning, set reasoning: true in the chat tool call. If the model and provider support it, you'll receive both the response and reasoning content.

Development

Setup

pnpm install

Build

pnpm build

Lint & Format

pnpm lint
pnpm format

Type Check

pnpm type-check

Development Mode

pnpm dev

Project Structure

src/
├── bin/polybrain.ts    # CLI entry point
├── launcher.ts         # Server launcher & management
├── http-server.ts      # HTTP server
├── index.ts            # Main server logic
├── mcp-tools.ts        # MCP tool definitions
├── conversation-manager.ts
├── openai-client.ts
├── config.ts
├── logger.ts
└── types.ts

How It Works

  1. Launcher checks if HTTP server is running
  2. Starts server in background if needed
  3. Connects to Claude Code via stdio MCP
  4. Routes requests to HTTP backend
  5. Maintains conversation history
  6. Responds with MCP protocol messages

Debugging

Enable debug logs to stderr:

{
  "mcpServers": {
    "polybrain": {
      "command": "polybrain",
      "env": {
        "POLYBRAIN_DEBUG": "true"
      }
    }
  }
}

Restart Server

After changing configuration in ~/.polybrain.yaml, restart the HTTP backend server:

polybrain --restart

This kills the background HTTP server. The next time you use polybrain, it will automatically start a fresh server with the updated configuration.

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选