PolyNeural.ai Knowledge Graph MCP Bundle

PolyNeural.ai Knowledge Graph MCP Bundle

Provides AI agents with persistent memory and knowledge management through a comprehensive knowledge graph platform. Enables storing, searching, and managing entities, relationships, and observations with advanced features like trending analysis and smart ranking.

Category
访问服务器

README

PolyNeural.ai MCP Bundle (@polyneural/mcpb)

An MCP Bundle that provides AI agents with persistent memory through the PolyNeural.ai knowledge graph platform.

🚀 Quick Download

Download Latest Release →

Double-click the .mcpb file to install in Claude Desktop, then configure your PolyNeural.ai API key.

Architecture

This MCP Bundle implements a stdio MCP server that bridges to the PolyNeural.ai backend HTTP MCP endpoints. This approach provides:

  • No code duplication - Uses existing PolyNeural.ai backend MCP endpoints
  • Seamless authentication - Forwards API keys via HTTP headers
  • Protocol translation - Bridges stdio MCP ↔ HTTP MCP endpoints
  • Easy maintenance - Single source of truth for MCP tools and logic

Prerequisites

  1. PolyNeural.ai Backend Running: The backend must be accessible (default: https://polyneural.ai)
  2. Valid API Key: You need a PolyNeural.ai API key (format: kg_xxxxxxxx)
  3. Node.js 16+: Required for running the extension

Installation

Option 1: As MCPB Bundle (Recommended)

  1. Download the latest polyneural-mcpb.mcpb file from the releases page
  2. Install using your MCPB-compatible application:
    • Claude Desktop: Double-click the .mcpb file to install
    • Other MCPB clients: Follow your client's installation process
  3. Configure your PolyNeural.ai API key in the bundle settings UI

Option 2: Manual Installation

  1. Install dependencies:
npm install
  1. For Claude Desktop: Add to your claude_desktop_config.json:
{
  "mcpServers": {
    "@polyneural/mcpb": {
      "command": "node",
      "args": ["/path/to/mcpb/server/index.js"],
      "env": {
        "API_URL": "https://polyneural.ai",
        "API_KEY": "kg_your_api_key_here",
        "DEBUG": "false",
        "TIMEOUT": "30"
      }
    }
  }
}

Configuration

The MCPB bundle supports these user configuration options (set via MCPB client UI or environment variables):

Variable Description Default Required
API_URL PolyNeural.ai backend URL https://polyneural.ai No
API_KEY Your PolyNeural.ai API key - Yes
DEBUG Enable debug logging false No
TIMEOUT Request timeout in seconds 30 No

Available Tools

Once installed, Claude will have access to these PolyNeural.ai knowledge graph tools:

Core Operations

  • create_entities - Store new knowledge entities
  • create_relations - Create relationships between entities
  • search_nodes - Search the knowledge graph
  • open_nodes - Retrieve specific entities
  • read_graph - Get the complete graph structure

Advanced Operations

  • add_observations - Add details to existing entities
  • delete_entities - Remove entities
  • delete_relations - Remove relationships
  • delete_observations - Remove specific observations
  • get_entities_by_identifiers - Bulk entity retrieval
  • get_entity_relationships - Get entity connections
  • get_entities_by_date_range - Time-based queries
  • get_recent_changes - Recent activity tracking
  • get_trending_entities - Popular entities
  • get_frecency_entities - Frequency + recency ranking
  • search_with_frecency - Smart search with ranking

Testing

Manual Testing

# Set environment variables and run
API_URL=https://polyneural.ai API_KEY=kg_your_key DEBUG=true npm start

Create MCPB Bundle

# Install MCPB CLI (if not already installed)
npm install -g @anthropic-ai/mcpb

# Create the bundle
mcpb pack

Integration Testing

# Run the integration test script
node test-integration.js

Troubleshooting

Common Issues

Bundle won't start:

  • Verify the PolyNeural.ai backend is running: curl https://polyneural.ai/health
  • Check your API key format (must start with kg_)
  • Enable debug mode in the bundle configuration

No tools available in Claude:

  • Ensure Claude Desktop is restarted after installing the bundle
  • Check the logs for authentication errors
  • Verify the bundle was installed correctly

Connection timeouts:

  • Increase the TIMEOUT value
  • Check network connectivity to the backend
  • Verify the backend MCP endpoints are accessible: curl -H "Authorization: Bearer kg_your_key" https://polyneural.ai/mcp/initialize

Debug Mode

Enable debug logging to see detailed communication:

DEBUG=true npm start

This will show:

  • HTTP request details and responses
  • Authentication headers
  • MCP message routing
  • Error details

Architecture Details

MCP Client (stdio MCP client)
    ↕ (JSON-RPC over stdio)
@polyneural/mcpb MCP Server (HTTP bridge)
    ↕ (HTTP with Authorization headers)
PolyNeural.ai Backend (HTTP MCP endpoints)
    ↕ (Database operations)
Knowledge Graph Database

The MCPB server handles:

  • stdio MCP server implementation
  • HTTP requests to backend MCP endpoints
  • Authentication header forwarding
  • Request/response translation
  • Error handling and logging

Development

To modify this MCPB bundle:

  1. Server Logic: Edit server/index.js (HTTP bridge implementation)
  2. Bundle Configuration: Modify manifest.json for MCPB-specific settings
  3. Dependencies: Update package.json as needed
  4. Build Bundle: Run mcpb pack to create the .mcpb file

The beauty of this architecture is that all the actual MCP tool logic remains in the PolyNeural.ai backend - this bundle is purely an HTTP bridge.

MCPB Compliance

This bundle follows the MCPB specification:

  • ✅ Valid manifest.json with manifest_version: "0.1"
  • Backward Compatible: Also includes dxt_version: "0.1" for current Claude Desktop
  • ✅ Proper MCP server implementation using @modelcontextprotocol/sdk
  • ✅ User configuration via user_config field
  • ✅ Platform compatibility declarations
  • ✅ Proper error handling and timeout management
  • ✅ Comprehensive tool and capability declarations

Compatibility Note

The manifest includes both manifest_version (MCPB standard) and dxt_version (current Claude Desktop requirement) to ensure compatibility with both current and future versions of MCPB-compatible applications.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选