Pomera AI Commander
A text processing workbench and MCP server that provides 22 tools for cleaning, transforming, and extracting data from text. It enables AI assistants to perform complex operations like regex extraction, log normalization, and encoding through a unified interface.
README
Pomera AI Commander (PAC)
<p align="center"> <img src="resources/icon.png" alt="Pomera - the fluffy Pomeranian mascot" width="128" height="128"> </p>
A desktop text "workbench" + MCP server: clean, transform, extract, and analyze text fast—manually in a GUI or programmatically from AI assistants (Cursor / Claude Desktop / MCP clients).
Hook: Stop pasting text into 10 random websites. Pomera gives you one place (GUI + MCP) to do the 90% text ops you repeat every week.
Download latest release · Docs: Tools · MCP Guide · Troubleshooting
60-second demo (what to expect)

Best-for workflows
- Cleaning pasted logs / PDFs (whitespace, wrapping, stats)
- Extracting emails/URLs/IDs via regex
- Normalizing case, sorting, columns
- Hashing/encoding utilities
- Letting Cursor/Claude call these as MCP tools in a repeatable pipeline
Prerequisites
Python 3.8+ is required for all installation methods.
macOS (Homebrew)
# Tkinter support (replace @3.14 with your Python version)
brew install python-tk@3.14
pip3 install requests reportlab python-docx
Ubuntu/Debian
sudo apt-get install python3-tk
pip3 install requests reportlab python-docx
Windows
Tkinter is included with Python from python.org.
pip install requests reportlab python-docx
Note: For PEP 668 protected environments, use
pip3 install --useror a virtual environment.
Install / Run
Option A — Prebuilt executable (recommended)
Download from Releases and run.
Option B — Python (PyPI)
pip install pomera-ai-commander
# then run:
pomera-ai-commander --help
Option C — Node.js (npm)
npm install -g pomera-ai-commander
# then run:
pomera-mcp --help
Create Desktop Shortcut
After installing via pip or npm, create a desktop shortcut for quick access:
# For pip install:
pomera-create-shortcut
# For npm install (from package directory):
python create_shortcut.py
MCP Server for AI Assistants
Pomera exposes 22 text processing tools via MCP. Configure your AI assistant:
Cursor (.cursor/mcp.json):
{
"mcpServers": {
"pomera": {
"command": "pomera-ai-commander"
}
}
}
Claude Desktop (claude_desktop_config.json):
{
"mcpServers": {
"pomera": {
"command": "pomera-ai-commander"
}
}
}
💡 Tip: If the simple command doesn't work, use the full path. Find it with:
# For npm install: npm root -g # Then use: <result>/pomera-ai-commander/pomera_mcp_server.py # For pip install: pip show pomera-ai-commander | grep Location
See the full MCP Server Guide for Antigravity, executable configs, and troubleshooting.
License
MIT License - see LICENSE for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。