portfolio-mcp
A portfolio analysis MCP server that enables AI agents to manage investment portfolios, fetch financial data from Yahoo Finance and CoinGecko, and perform advanced analysis like weight optimization and Monte Carlo simulations. It utilizes reference-based caching to efficiently handle large datasets without bloating the LLM's context window.
README
portfolio-mcp
A portfolio analysis MCP server powered by mcp-refcache for building AI agent tools that handle financial data efficiently.
Features
- Portfolio Management: Create, read, update, delete portfolios with persistent storage
- Data Sources: Yahoo Finance (stocks/ETFs), CoinGecko (crypto), Synthetic (GBM simulation)
- Analysis Tools: Returns, volatility, Sharpe ratio, Sortino ratio, VaR, drawdowns, correlations
- Optimization: Efficient Frontier, Monte Carlo simulation, weight optimization
- Reference-Based Caching: Large datasets cached via mcp-refcache to avoid context bloat
Installation
Using uv (recommended)
# Clone the repository
git clone https://github.com/l4b4r4b4b4/portfolio-mcp
cd portfolio-mcp
# Install dependencies
uv sync
# Run the server
uv run portfolio-mcp stdio
Using pip
pip install portfolio-mcp
portfolio-mcp stdio
Quick Start
Connect to Claude Desktop
Add to your Claude Desktop configuration (~/.config/claude/claude_desktop_config.json):
{
"mcpServers": {
"portfolio-mcp": {
"command": "uv",
"args": ["run", "--directory", "/path/to/portfolio-mcp", "portfolio-mcp", "stdio"]
}
}
}
Basic Usage
Once connected, you can use natural language to:
"Create a portfolio called 'tech_stocks' with AAPL, GOOG, and MSFT"
"Analyze the returns and volatility of my tech_stocks portfolio"
"Optimize my portfolio for maximum Sharpe ratio"
"Show me the efficient frontier with 20 points"
"Compare my portfolios by Sharpe ratio"
Available Tools
Portfolio Management (6 tools)
create_portfolio- Create a new portfolio with symbols and weightsget_portfolio- Retrieve portfolio details and metricslist_portfolios- List all stored portfoliosdelete_portfolio- Remove a portfolioupdate_portfolio_weights- Modify portfolio weightsclone_portfolio- Create a copy with optional new weights
Analysis Tools (8 tools)
get_portfolio_metrics- Comprehensive metrics (return, volatility, Sharpe, Sortino, VaR)get_returns- Daily, log, or cumulative returnsget_correlation_matrix- Asset correlation analysisget_covariance_matrix- Variance-covariance structureget_individual_stock_metrics- Per-asset statisticsget_drawdown_analysis- Maximum drawdown and recovery analysiscompare_portfolios- Side-by-side portfolio comparison
Optimization Tools (4 tools)
optimize_portfolio- Optimize weights (max Sharpe, min volatility, target return/vol)get_efficient_frontier- Generate efficient frontier curverun_monte_carlo- Monte Carlo simulation for portfolio analysisapply_optimization- Apply optimization and update stored portfolio
Data Tools (8 tools)
generate_price_series- Generate synthetic GBM price datagenerate_portfolio_scenarios- Create multiple scenario datasetsget_sample_portfolio_data- Get sample data for testingget_trending_coins- Trending cryptocurrencies from CoinGeckosearch_crypto_coins- Search for crypto assetsget_crypto_info- Detailed cryptocurrency informationlist_crypto_symbols- Available crypto symbol mappingsget_cached_result- Retrieve cached large results by reference ID
Architecture
portfolio-mcp/
├── app/
│ ├── __init__.py
│ ├── __main__.py # Typer CLI entry point
│ ├── config.py # Pydantic settings
│ ├── server.py # FastMCP server setup
│ ├── storage.py # RefCache-based portfolio storage
│ ├── models.py # Pydantic models for I/O
│ ├── data_sources.py # Yahoo Finance + CoinGecko APIs
│ └── tools/ # MCP tool implementations
│ ├── portfolio.py
│ ├── analysis.py
│ ├── optimization.py
│ └── data.py
└── tests/ # 163 tests, 81% coverage
Reference-Based Caching
This server uses mcp-refcache to handle large results efficiently:
- Large results are cached - When a tool returns data that exceeds the preview size, it's stored in the cache
- References are returned - The tool returns a
ref_idand a preview/sample of the data - Full data on demand - Use
get_cached_result(ref_id=...)to retrieve the complete data
This prevents context window bloat when working with large datasets like price histories or Monte Carlo simulations.
Development
Prerequisites
- Python 3.12+
- uv (recommended) or pip
Setup
# Clone and install
git clone https://github.com/l4b4r4b4b4/portfolio-mcp
cd portfolio-mcp
uv sync
# Run tests
uv run pytest --cov
# Lint and format
uv run ruff check .
uv run ruff format .
Running Locally
# stdio mode (for MCP clients)
uv run portfolio-mcp stdio
# SSE mode (for web clients)
uv run portfolio-mcp sse --port 8080
# Streamable HTTP mode
uv run portfolio-mcp streamable-http --port 8080
Configuration
Environment variables:
| Variable | Description | Default |
|---|---|---|
LOG_LEVEL |
Logging level | INFO |
CACHE_TTL |
Default cache TTL in seconds | 3600 |
License
MIT License - see LICENSE for details.
Related Projects
- mcp-refcache - Reference-based caching for MCP servers
- fastmcp-template - Template this project was built from
- FinQuant - Financial portfolio analysis library
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。