PortHunter MCP
Analyzes PCAP/PCAPNG network capture files to detect port scanning techniques (SYN, FIN, Xmas), classify scan patterns, and enrich suspicious IP addresses with threat intelligence data. Provides comprehensive network security analysis through natural language interactions.
README
PortHunter MCP — Local MCP server for port-scan analysis (PCAP/PCAPNG)
PortHunter es un servidor MCP local (transport STDIO) que:
- analiza capturas PCAP/PCAPNG,
- detecta técnicas comunes de escaneo (SYN, FIN/NULL/Xmas),
- clasifica patrones (horizontal / vertical),
- lista sospechosos y obtiene el primer evento relevante,
- puede enriquecer IPs públicas (OTX/GreyNoise/ASN/Geo) y correlacionarlas.
Está pensado para ser consumido por cualquier host/chatbot MCP.
Requisitos
- Python 3.11+
- Windows, Linux o macOS
- (Opcional) Docker
Instalación
python -m venv .venv
# Windows PowerShell: .\.venv\Scripts\Activate.ps1
# Linux/macOS: source .venv/bin/activate
pip install -U pip
pip install -e .
El
-e .instala el paqueteporthunteren editable desde este repo.
Ejecución (STDIO)
Windows PowerShell (recomendado)
$env:PORT_HUNTER_TOKEN = "TEST_TOKEN"
$env:PORT_HUNTER_ALLOWED_DIR = (Get-Location).Path
python -m porthunter.server
Windows CMD
set PORT_HUNTER_TOKEN=TEST_TOKEN
set PORT_HUNTER_ALLOWED_DIR=%CD%
python -m porthunter.server
Linux/macOS
export PORT_HUNTER_TOKEN=TEST_TOKEN
export PORT_HUNTER_ALLOWED_DIR="$PWD"
python -m porthunter.server
El servidor queda escuchando por STDIO a la espera de llamadas MCP
call_tool.
Variables de entorno (seguridad y límites)
| Variable | Default | Descripción |
|---|---|---|
PORT_HUNTER_TOKEN |
TEST_TOKEN |
Token requerido si PORT_HUNTER_REQUIRE_TOKEN=true. |
PORT_HUNTER_REQUIRE_TOKEN |
true |
Exige auth_token en cada llamada de tool. |
PORT_HUNTER_ALLOWED_DIR |
. |
Directorio raíz permitido para leer PCAP/PCAPNG. |
PORT_HUNTER_MAX_PCAP_MB |
50 |
Tamaño máximo del archivo a procesar. |
PORT_HUNTER_ALLOW_PRIVATE |
false |
Si true, permite enriquecer IPs privadas (por defecto se omite). |
mcp.json (ejemplo listo para usar)
{
"name": "porthunter",
"version": "0.1.0",
"transport": {
"stdio": { "command": "python", "args": ["-m", "porthunter.server"] }
},
"env": {
"PORT_HUNTER_TOKEN": "TEST_TOKEN",
"PORT_HUNTER_ALLOWED_DIR": ".",
"PORT_HUNTER_REQUIRE_TOKEN": "true",
"PORT_HUNTER_MAX_PCAP_MB": "50"
},
"tools": [
"scan_overview",
"list_suspects",
"first_scan_event",
"enrich_ip",
"correlate"
]
}
Tools (API)
Todas las herramientas devuelven UTC ISO-8601 en
generated_at.
1) scan_overview(path, time_window_s=60, top_k=20)
Input
{ "path": "captures/scan-demo.pcapng", "time_window_s": 60, "top_k": 20, "auth_token": "TEST_TOKEN" }
Return
{ "ok": true, "overview": { /* ver ejemplo */ }, "generated_at": "..." }
2) list_suspects(path, min_ports=10, min_rate_pps=5.0)
Input
{ "path": "captures/scan-demo.pcapng", "min_ports": 10, "min_rate_pps": 5.0, "auth_token": "TEST_TOKEN" }
Return
{ "ok": true, "suspects": [ /* items */ ], "generated_at": "..." }
3) first_scan_event(path)
Input
{ "path": "captures/scan-demo.pcapng", "auth_token": "TEST_TOKEN" }
Return
{ "ok": true, "first_event": { /* o null */ }, "generated_at": "..." }
4) enrich_ip(ip)
Input
{ "ip": "8.8.8.8", "auth_token": "TEST_TOKEN" }
Return (ok)
{ "ok": true, "enrichment": { "asn": "...", "org": "...", "geo": { "country": "US" }, "threat": { "otx": {...}, "greynoise": {...} } }, "generated_at": "..." }
Return (error)
{ "ok": false, "error": "invalid_ip", "generated_at": "..." }
5) correlate(ips[])
Input
{ "ips": ["abc", "192.168.0.10", "8.8.8.8"], "auth_token": "TEST_TOKEN" }
Return
{
"ok": true,
"results": [
{ "ip": "abc", "ok": false, "error": "invalid_ip" },
{ "ip": "192.168.0.10", "skipped": true, "reason": "private_ip" },
{ "ip": "8.8.8.8", "ok": true, "kind": "public", "enrichment": {/*...*/} }
],
"generated_at": "..."
}
Ejemplos de JSON (respuestas reales)
scan_overview (ejemplo)
{
"ok": true,
"overview": {
"file": "captures/scan.pcapng",
"total_pkts": 12345,
"interval_s": 600,
"scanners": [
{
"ip": "1.2.3.4",
"pkts": 500,
"distinct_ports": 120,
"distinct_hosts": 30,
"flag_stats": { "SYN": 480, "FIN": 15, "XMAS": 5 }
}
],
"targets": [
{ "ip": "10.0.0.5", "pkts": 320, "ports_hit": [22, 80, 443] }
],
"port_distribution": [
{ "port": 80, "hits": 450 }, { "port": 22, "hits": 120 }
],
"suspected_patterns": ["syn_scan", "xmas_scan"]
},
"generated_at": "2025-09-20T23:00:02Z"
}
list_suspects (ejemplo)
{
"ok": true,
"suspects": [
{
"ip": "5.6.7.8",
"kind": "horizontal",
"distinct_ports": 50,
"rate_pps": 7.2,
"flags_seen": ["SYN"]
},
{
"ip": "9.9.9.9",
"kind": "vertical",
"distinct_ports": 1,
"rate_pps": 12.0,
"flags_seen": ["SYN","FIN"]
}
],
"generated_at": "2025-09-20T23:01:12Z"
}
first_scan_event (ejemplo)
{
"ok": true,
"first_event": {
"ts": "2025-09-20T22:59:58Z",
"src": "1.2.3.4",
"dst": "10.0.0.5",
"port": 80,
"flags": "S"
},
"generated_at": "2025-09-20T23:01:45Z"
}
enrich_ip (error por IP inválida)
{ "ok": false, "error": "invalid_ip", "generated_at": "2025-09-20T23:02:10Z" }
correlate (mixto)
{
"ok": true,
"results": [
{ "ip": "abc", "ok": false, "error": "invalid_ip" },
{ "ip": "192.168.0.10", "skipped": true, "reason": "private_ip" },
{ "ip": "8.8.8.8", "ok": true, "kind": "public" }
],
"generated_at": "2025-09-20T23:02:30Z"
}
Errores comunes (contract)
- Archivo fuera del directorio permitido:
{ "ok": false, "error": "path_outside_allowed_dir", "generated_at": "..." }
- Extensión no soportada:
{ "ok": false, "error": "unsupported_file_type", "generated_at": "..." }
- Excede tamaño máximo:
{ "ok": false, "error": "file_too_large", "generated_at": "..." }
- Token faltante o incorrecto (si se requiere):
{ "ok": false, "error": "unauthorized", "generated_at": "..." }
Uso desde un host MCP (pseudo-cliente)
import asyncio, json
from mcp import StdioServerParameters, types
from mcp.client.stdio import stdio_client
from mcp.client.session import ClientSession
async def main():
params = StdioServerParameters(
command="python",
args=["-m", "porthunter.server"],
env={
"PORT_HUNTER_TOKEN": "TEST_TOKEN",
"PORT_HUNTER_ALLOWED_DIR": ".",
}
)
async with stdio_client(params) as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
resp = await session.call_tool(
name="scan_overview",
arguments={"path": "captures/scan-demo-20250906-1.pcapng", "auth_token": "TEST_TOKEN"}
)
# structuredContent preferente
sc = getattr(resp, "structuredContent", None)
if isinstance(sc, dict):
print(json.dumps(sc.get("result", sc), indent=2))
else:
text = "".join(b.text for b in resp.content if isinstance(b, types.TextContent))
print(text)
asyncio.run(main())
Docker
docker build -t porthunter-mcp .
docker run --rm -it \
-e PORT_HUNTER_TOKEN=TEST_TOKEN \
-e PORT_HUNTER_ALLOWED_DIR=/data \
-v "$PWD:/data" \
porthunter-mcp
Benchmark (opcional)
python scripts/benchmark_porthunter.py captures/scan-demo-20250906-1.pcapng
Salida sugerida:
- tamaño archivo,
- paquetes totales,
- duración total (s),
- pps promedio.
Incluye una tablita de resultados en el README si vas a reportar métricas.
Desarrollo
- Código fuente del servidor en
porthunter/ - Utilidades de PCAP e inteligencia en
porthunter/utils/** - Ejecuta linters/tests en tu proyecto principal si los tienes allí.
- Si subes pruebas mínimas aquí:
pytest -q
Licencia
MIT (sugerida). Añade un archivo LICENSE si lo deseas.
Créditos y referencias
- Model Context Protocol
- Técnicas de escaneo: documentación pública (e.g., Nmap)
TL;DR
Arranca con:
$env:PORT_HUNTER_TOKEN = "TEST_TOKEN"
$env:PORT_HUNTER_ALLOWED_DIR = (Get-Location).Path
python -m porthunter.server
Llama scan_overview / list_suspects / first_scan_event / enrich_ip / correlate y consume el JSON como en los ejemplos de arriba.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。