Post-Quantum Cryptography MCP Server

Post-Quantum Cryptography MCP Server

Enables AI assistants to perform quantum-resistant cryptographic operations using NIST-standardized algorithms including ML-KEM, ML-DSA, and SPHINCS+. Supports key generation, encryption, digital signatures, and security analysis for post-quantum cryptography research and development.

Category
访问服务器

README

Post-Quantum Cryptography MCP Server

License: MIT Python 3.10+ liboqs MCP

A Model Context Protocol (MCP) server that provides post-quantum cryptographic operations using Open Quantum Safe's liboqs. Enables AI assistants like Claude to perform quantum-resistant cryptographic operations including key generation, encryption, signing, and verification.

Why Post-Quantum Cryptography?

Current cryptographic systems (RSA, ECC, ECDSA) will be broken by quantum computers running Shor's algorithm. NIST has standardized new quantum-resistant algorithms:

Standard Algorithm Type Status
FIPS 203 ML-KEM (Kyber) Key Encapsulation Finalized 2024
FIPS 204 ML-DSA (Dilithium) Digital Signature Finalized 2024
FIPS 205 SLH-DSA (SPHINCS+) Hash-based Signature Finalized 2024

This MCP server makes these algorithms accessible to AI agents for research, development, and integration.

Features

  • 32 Key Encapsulation Mechanisms (KEMs): ML-KEM, FrodoKEM, HQC, BIKE, Classic McEliece
  • 221 Signature Algorithms: ML-DSA, Falcon, SPHINCS+, MAYO, CROSS, UOV
  • Full MCP Integration: Works with Claude Desktop, Claude Code, Cursor, and any MCP client
  • NIST Standards Compliant: Implements FIPS 203, 204, and 205 algorithms
  • Security Analysis: Compare classical vs quantum security levels

Quick Start

Prerequisites

  • Python 3.10+
  • liboqs shared library
  • uv (recommended) or pip

Installation

1. Install liboqs

macOS (Homebrew with shared library):

# Homebrew only provides static library, build from source for shared:
git clone --depth 1 --branch 0.15.0 https://github.com/open-quantum-safe/liboqs.git
cd liboqs && mkdir build && cd build
cmake -DBUILD_SHARED_LIBS=ON -DCMAKE_INSTALL_PREFIX=$HOME/.local ..
make -j4 && make install

Ubuntu/Debian:

sudo apt-get install liboqs-dev

2. Clone and Install

git clone https://github.com/scottdhughes/post-quantum-mcp.git
cd post-quantum-mcp

# Create virtual environment with Python 3.10+
uv venv --python 3.10 .venv
source .venv/bin/activate

# Install dependencies
uv pip install liboqs-python "mcp>=1.0.0"

3. Configure Claude Code / Claude Desktop

Add to your MCP configuration:

Claude Code (~/.claude.json):

{
  "mcpServers": {
    "pqc": {
      "type": "stdio",
      "command": "/path/to/post-quantum-mcp/run.sh",
      "args": [],
      "env": {}
    }
  }
}

Claude Desktop (claude_desktop_config.json):

{
  "mcpServers": {
    "pqc": {
      "command": "/path/to/post-quantum-mcp/run.sh"
    }
  }
}

Available Tools

pqc_list_algorithms

List all available post-quantum algorithms.

Input: { "type": "kem" | "sig" | "all" }
Output: List of available algorithms with NIST standard mappings

pqc_algorithm_info

Get detailed information about a specific algorithm.

Input: { "algorithm": "ML-KEM-768" }
Output: Key sizes, security level, performance characteristics

pqc_generate_keypair

Generate a quantum-resistant key pair.

Input: { "algorithm": "ML-DSA-65" }
Output: Base64-encoded public and secret keys

pqc_encapsulate

Perform key encapsulation (create shared secret).

Input: { "algorithm": "ML-KEM-768", "public_key": "<base64>" }
Output: Ciphertext and shared secret

pqc_decapsulate

Recover shared secret from ciphertext.

Input: { "algorithm": "ML-KEM-768", "secret_key": "<base64>", "ciphertext": "<base64>" }
Output: Shared secret

pqc_sign

Sign a message with a post-quantum signature.

Input: { "algorithm": "ML-DSA-65", "secret_key": "<base64>", "message": "Hello, quantum world!" }
Output: Base64-encoded signature

pqc_verify

Verify a post-quantum signature.

Input: { "algorithm": "ML-DSA-65", "public_key": "<base64>", "message": "...", "signature": "<base64>" }
Output: { "valid": true/false }

pqc_hash_to_curve

Hash a message using quantum-safe hash functions.

Input: { "message": "data", "algorithm": "SHA3-256" | "SHA3-512" | "SHAKE128" | "SHAKE256" }
Output: Digest in hex and base64

pqc_security_analysis

Analyze security properties of an algorithm.

Input: { "algorithm": "ML-KEM-768" }
Output: NIST level, classical/quantum security equivalents, Grover/Shor resistance

Supported Algorithms

Key Encapsulation Mechanisms (KEMs)

Algorithm NIST Level Public Key Ciphertext Shared Secret
ML-KEM-512 1 800 B 768 B 32 B
ML-KEM-768 3 1,184 B 1,088 B 32 B
ML-KEM-1024 5 1,568 B 1,568 B 32 B
FrodoKEM-640 1 9,616 B 9,720 B 16 B
HQC-128 1 2,249 B 4,481 B 64 B

Digital Signatures

Algorithm NIST Level Public Key Signature Notes
ML-DSA-44 2 1,312 B 2,420 B Balanced
ML-DSA-65 3 1,952 B 3,309 B Recommended
ML-DSA-87 5 2,592 B 4,627 B High security
Falcon-512 1 897 B 653 B Smallest sigs
Falcon-1024 5 1,793 B 1,280 B Compact
SPHINCS+-SHA2-128f 1 32 B 17,088 B Stateless, hash-based
SPHINCS+-SHA2-256f 5 64 B 49,856 B Maximum security

Example Usage with Claude

Once configured, you can ask Claude:

"Generate an ML-KEM-768 keypair and show me the security analysis"

"Sign the message 'Hello quantum world' using ML-DSA-65 and verify it"

"Compare the signature sizes of Falcon-512 vs SPHINCS+-SHA2-128f"

"What's the quantum security level of ML-KEM-1024?"

Architecture

post-quantum-mcp/
├── pqc_mcp_server/
│   ├── __init__.py      # Main MCP server implementation
│   └── __main__.py      # Entry point
├── run.sh               # Wrapper script (sets DYLD_LIBRARY_PATH)
├── pyproject.toml       # Package configuration
└── README.md

Security Considerations

  • Key Storage: This server generates keys in memory. For production use, implement secure key storage.
  • Side Channels: liboqs implementations aim to be constant-time but may not be suitable for all threat models.
  • Algorithm Selection: ML-KEM and ML-DSA are NIST-approved. Other algorithms are experimental.
  • Version Compatibility: Ensure liboqs version matches liboqs-python expectations.

Development

# Run tests
python -m pytest tests/

# Format code
python -m black pqc_mcp_server/

# Type checking
python -m mypy pqc_mcp_server/

Related Projects

Contributing

Contributions are welcome! Please read CONTRIBUTING.md for guidelines.

License

MIT License - see LICENSE for details.

Acknowledgments

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选